Beispiel #1
0
    def test_creation_and_hydration(self):
        (ri1, run_id, experiment_id, user_id, status, start_time, end_time,
         lifecycle_stage, artifact_uri) = self._create()
        self._check(ri1, run_id, experiment_id, user_id, status, start_time,
                    end_time, lifecycle_stage, artifact_uri)
        as_dict = {
            "run_uuid": run_id,
            "run_id": run_id,
            "experiment_id": experiment_id,
            "user_id": user_id,
            "status": status,
            "start_time": start_time,
            "end_time": end_time,
            "lifecycle_stage": lifecycle_stage,
            "artifact_uri": artifact_uri
        }
        self.assertEqual(dict(ri1), as_dict)

        proto = ri1.to_proto()
        ri2 = RunInfo.from_proto(proto)
        self._check(ri2, run_id, experiment_id, user_id, status, start_time,
                    end_time, lifecycle_stage, artifact_uri)
        ri3 = RunInfo.from_dictionary(as_dict)
        self._check(ri3, run_id, experiment_id, user_id, status, start_time,
                    end_time, lifecycle_stage, artifact_uri)
        # Test that we can add a field to RunInfo and still deserialize it from a dictionary
        dict_copy_0 = as_dict.copy()
        dict_copy_0["my_new_field"] = "new field value"
        ri4 = RunInfo.from_dictionary(dict_copy_0)
        self._check(ri4, run_id, experiment_id, user_id, status, start_time,
                    end_time, lifecycle_stage, artifact_uri)
Beispiel #2
0
 def update_run_info(self, run_id, run_status, end_time):
     """ Updates the metadata of the specified run. """
     req_body = message_to_json(
         UpdateRun(run_uuid=run_id,
                   run_id=run_id,
                   status=run_status,
                   end_time=end_time))
     response_proto = self._call_endpoint(UpdateRun, req_body)
     return RunInfo.from_proto(response_proto.run_info)
Beispiel #3
0
def _read_persisted_run_info_dict(run_info_dict):
    dict_copy = run_info_dict.copy()
    if 'lifecycle_stage' not in dict_copy:
        dict_copy['lifecycle_stage'] = LifecycleStage.ACTIVE
    # 'status' is stored as an integer enum in meta file, but RunInfo.status field is a string.
    # converting to string before hydrating RunInfo.
    # If 'status' value not recorded in files, mark it as 'RUNNING' (default)
    dict_copy['status'] = RunStatus.to_string(
        run_info_dict.get('status', RunStatus.RUNNING))

    # 'experiment_id' was changed from int to string, so we must cast to string
    # when reading legacy run_infos
    if isinstance(dict_copy["experiment_id"], int):
        dict_copy["experiment_id"] = str(dict_copy["experiment_id"])
    return RunInfo.from_dictionary(dict_copy)
Beispiel #4
0
 def _create():
     run_id = str(uuid.uuid4())
     experiment_id = str(random_int(10, 2000))
     user_id = random_str(random_int(10, 25))
     status = RunStatus.to_string(random.choice(RunStatus.all_status()))
     start_time = random_int(1, 10)
     end_time = start_time + random_int(1, 10)
     lifecycle_stage = LifecycleStage.ACTIVE
     artifact_uri = random_str(random_int(10, 40))
     ri = RunInfo(run_uuid=run_id,
                  run_id=run_id,
                  experiment_id=experiment_id,
                  user_id=user_id,
                  status=status,
                  start_time=start_time,
                  end_time=end_time,
                  lifecycle_stage=lifecycle_stage,
                  artifact_uri=artifact_uri)
     return (ri, run_id, experiment_id, user_id, status, start_time,
             end_time, lifecycle_stage, artifact_uri)
Beispiel #5
0
def create_run(run_id="",
               exp_id="",
               uid="",
               start=0,
               end=0,
               metrics=None,
               params=None,
               tags=None,
               status=RunStatus.FINISHED,
               a_uri=None):
    return Run(
        RunInfo(run_uuid=run_id,
                run_id=run_id,
                experiment_id=exp_id,
                user_id=uid,
                status=status,
                start_time=start,
                end_time=end,
                lifecycle_stage=LifecycleStage.ACTIVE,
                artifact_uri=a_uri),
        RunData(metrics=metrics, params=params, tags=tags))
Beispiel #6
0
    def to_mlflow_entity(self):
        """
        Convert DB model to corresponding MLflow entity.

        :return: :py:class:`mlflow.entities.Run`.
        """
        run_info = RunInfo(run_uuid=self.run_uuid,
                           run_id=self.run_uuid,
                           experiment_id=str(self.experiment_id),
                           user_id=self.user_id,
                           status=self.status,
                           start_time=self.start_time,
                           end_time=self.end_time,
                           lifecycle_stage=self.lifecycle_stage,
                           artifact_uri=self.artifact_uri)

        run_data = RunData(
            metrics=[m.to_mlflow_entity() for m in self.latest_metrics],
            params=[p.to_mlflow_entity() for p in self.params],
            tags=[t.to_mlflow_entity() for t in self.tags])

        return Run(run_info=run_info, run_data=run_data)
Beispiel #7
0
 def test_string_repr(self):
     run_info = RunInfo(run_uuid="hi",
                        run_id="hi",
                        experiment_id=0,
                        user_id="user-id",
                        status=RunStatus.FAILED,
                        start_time=0,
                        end_time=1,
                        lifecycle_stage=LifecycleStage.ACTIVE)
     metrics = [
         Metric(key="key-%s" % i, value=i, timestamp=0, step=i)
         for i in range(3)
     ]
     run_data = RunData(metrics=metrics, params=[], tags=[])
     run1 = Run(run_info, run_data)
     expected = (
         "<Run: data=<RunData: metrics={'key-0': 0, 'key-1': 1, 'key-2': 2}, "
         "params={}, tags={}>, info=<RunInfo: artifact_uri=None, end_time=1, "
         "experiment_id=0, "
         "lifecycle_stage='active', run_id='hi', run_uuid='hi', "
         "start_time=0, status=4, user_id='user-id'>>")
     assert str(run1) == expected
Beispiel #8
0
 def create_run(self, experiment_id, user_id, start_time, tags):
     """
     Creates a run with the specified attributes.
     """
     experiment_id = FileStore.DEFAULT_EXPERIMENT_ID if experiment_id is None else experiment_id
     experiment = self.get_experiment(experiment_id)
     if experiment is None:
         raise MlflowException(
             "Could not create run under experiment with ID %s - no such experiment "
             "exists." % experiment_id,
             databricks_pb2.RESOURCE_DOES_NOT_EXIST)
     if experiment.lifecycle_stage != LifecycleStage.ACTIVE:
         raise MlflowException(
             "Could not create run under non-active experiment with ID "
             "%s." % experiment_id, databricks_pb2.INVALID_STATE)
     run_uuid = uuid.uuid4().hex
     artifact_uri = self._get_artifact_dir(experiment_id, run_uuid)
     run_info = RunInfo(run_uuid=run_uuid,
                        run_id=run_uuid,
                        experiment_id=experiment_id,
                        artifact_uri=artifact_uri,
                        user_id=user_id,
                        status=RunStatus.to_string(RunStatus.RUNNING),
                        start_time=start_time,
                        end_time=None,
                        lifecycle_stage=LifecycleStage.ACTIVE)
     # Persist run metadata and create directories for logging metrics, parameters, artifacts
     run_dir = self._get_run_dir(run_info.experiment_id, run_info.run_id)
     mkdir(run_dir)
     run_info_dict = _make_persisted_run_info_dict(run_info)
     write_yaml(run_dir, FileStore.META_DATA_FILE_NAME, run_info_dict)
     mkdir(run_dir, FileStore.METRICS_FOLDER_NAME)
     mkdir(run_dir, FileStore.PARAMS_FOLDER_NAME)
     mkdir(run_dir, FileStore.ARTIFACTS_FOLDER_NAME)
     for tag in tags:
         self.set_tag(run_uuid, tag)
     return self.get_run(run_id=run_uuid)
Beispiel #9
0
 def test_searchable_attributes(self):
     self.assertSequenceEqual(set(["status", "artifact_uri"]),
                              set(RunInfo.get_searchable_attributes()))