wordList.append(tag) keywords2 = [] i = 0 for user in keywords: keywords2.append([]) for word in wordList: if word in user: keywords2[i].append((word,1)) else: keywords2[i].append((word,0)) i+=1 g = kmeans.open_ubigraph_server() result,clusters = kmeans.kcluster(g,palestrantes,keywords2,k=8) dataClusters = [] i = 0 for cluster in result: apCount = {} for indice in cluster: dados = keywords2[indice] for word,count in dados: apCount.setdefault(word,0) apCount[word]+= count words = apCount.items() words.sort(key=operator.itemgetter(1)) words.reverse() print words print '===='
keywords2 = [] i = 0 for tags in keywords_class: keywords2.append([]) for word in wordList: if word in tags: keywords2[i].append((word,1)) else: keywords2[i].append((word,0)) i+=1 g = kmeans.open_ubigraph_server() result,clusters = kmeans.kcluster(g,lectures,keywords2,k=8) dataClusters = [] i = 0 for cluster in result: apCount = {} for indice in cluster: dados = keywords2[indice] for word,count in dados: apCount.setdefault(word,0) apCount[word]+= count words = apCount.items() words.sort(key=operator.itemgetter(1)) words.reverse() print words print '===='
for user,wc in wordCounts.items(): socialNetworking[user] = {} for word in wordlist: socialNetworking[user].setdefault(word,0) if word in wc: socialNetworking[user][word] = wc[word] items = socialNetworking.items() users = [item[0] for item in items] data = [item[1].items() for item in items] #Step 05: Run a cluster algorithm (k-means) g = kmeans.open_ubigraph_server() #g = kmeans.open_ubigraph_server('http://IP:20738/RPC2') result,clusters = kmeans.kcluster(g,users,data,k=15) #Step 06: Presenting the results usersResult = [[users[v] for v in result[i] ] for i in range(len(result))] dataClusters = [] for cluster in usersResult: apCount = {} for user in cluster: data = socialNetworking[user] for word,wc in data.items(): apCount.setdefault(word,0) apCount[word]+= wc words = apCount.items() words.sort(key=operator.itemgetter(1))