Beispiel #1
0
def call_knn(data):
	print("KNN-----------------")
	print("accuracy: " , knn.calculate_accuracy( data ) )
	#calculate the best k in [3,15]
	accuracies = []
	ks = []
	posCounter=0
	for i in range(3,16):
		accuracies.append(knn.calculate_accuracy( data, i))
		ks.append(i)

	#calculate the best accuracy and print the k
	maxAc = accuracies[0]
	maxK = ks[0]
	for i in range(1,len(accuracies)):
		if (accuracies[i] > maxAc):
			maxAc=accuracies[i]
			maxK=ks[i]
	bestk = maxK
	print("The best k is: ", bestk)
def flores_data_set_run():
    data_set = arff.load(open('./data/flores.arff'))
    test_set, train_set = list_helper.separate_list(data_set['data'], 10)
    results = []

    for x in range(len(test_set)):
        result = knn.classify(train_set, test_set[x][:-1])
        results.append(result)
        print "Real: " + test_set[x][-1] + " - Predicted: " + result

    accuracy = knn.calculate_accuracy(test_set, results)
    print "Accuracy: " + str(accuracy) + "%"
def prediccion_data_set_run():
    data_set = arff.load(open('./data/prediccion.arff'))
    cleaned_data_set = [list_helper.unicode_to_int(x) for x in data_set['data']]
    test_set, train_set = list_helper.separate_list(cleaned_data_set, 1)

    results = []

    for x in range(len(test_set)):
        result = knn.classify(train_set, test_set[x][:-1])
        results.append(result)
        print "Real: " + str(test_set[x][-1]) + " - Predicted: " + str(result)

    accuracy = knn.calculate_accuracy(test_set, results)
    print "Accuracy: " + str(accuracy) + "%"