Beispiel #1
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--ernie_model",
                        default=None,
                        type=str,
                        required=True,
                        help="Ernie pre-trained model")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        default=False,
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        default=False,
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--threshold', type=float, default=.3)
    parser.add_argument("--vec_file",
                        default=None,
                        type=str,
                        required=True,
                        help="File with embeddings")
    parser.add_argument("--qid_file",
                        default=None,
                        type=str,
                        required=True,
                        help="File with qid mapping")
    parser.add_argument("--use_lim_ents",
                        default=None,
                        type=str,
                        required=True,
                        help="Whether to use limited entities")

    args = parser.parse_args()

    processors = FewrelProcessor

    num_labels_task = 80

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    processor = processors()
    num_labels = num_labels_task
    label_list = None

    tokenizer = BertTokenizer.from_pretrained(args.ernie_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_steps = None
    train_examples, label_list = processor.get_train_examples(args.data_dir)
    # check for limited ents
    lim_ents = []
    lim_check = (args.use_lim_ents == "y")
    if lim_check:
        lim_ents = lim_ent_map(0, "kg_embeddings/dbp_eid_2_wd_eid.txt")
        logger.info(
            "Limited entities flag is on. Count of unique entities considered: "
            + str(len(lim_ents)))

    vecs = []
    vecs.append([0] * 100)  # CLS
    lineindex = 1
    uid_map = {}
    logger.info("Reading embeddings file.")
    with open(args.vec_file, 'r') as fin:
        for line in fin:
            vec = line.strip().split('\t')
            # first element is unique id
            uniqid = int(vec[0])
            # map line index to unique id
            uid_map[uniqid] = lineindex
            # increment line index
            lineindex = lineindex + 1
            if (lim_check and (uniqid in lim_ents)) or not lim_check:
                vec = [float(x) for x in vec[1:101]]
            else:
                vec = vecs[0]
            vecs.append(vec)
    embed = torch.FloatTensor(vecs)
    embed = torch.nn.Embedding.from_pretrained(embed)
    #embed = torch.nn.Embedding(5041175, 100)

    logger.info("Shape of entity embedding: " + str(embed.weight.size()))
    del vecs

    filenames = os.listdir(args.output_dir)
    filenames = [x for x in filenames if "pytorch_model.bin_" in x]

    file_mark = []
    for x in filenames:
        file_mark.append([x, True])
        file_mark.append([x, False])

    eval_examples = processor.get_dev_examples(args.data_dir)
    dev = convert_examples_to_features(eval_examples, label_list,
                                       args.max_seq_length, tokenizer,
                                       args.threshold, args.qid_file)
    eval_examples = processor.get_test_examples(args.data_dir)
    test = convert_examples_to_features(eval_examples, label_list,
                                        args.max_seq_length, tokenizer,
                                        args.threshold, args.qid_file)

    for x, mark in file_mark:
        print(x, mark)
        output_model_file = os.path.join(args.output_dir, x)
        model_state_dict = torch.load(output_model_file)
        model, _ = BertForSequenceClassification.from_pretrained(
            args.ernie_model,
            state_dict=model_state_dict,
            num_labels=len(label_list))
        model.to(device)

        if mark:
            eval_features = dev
        else:
            eval_features = test
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        # zeros = [0 for _ in range(args.max_seq_length)]
        # zeros_ent = [0 for _ in range(100)]
        # zeros_ent = [zeros_ent for _ in range(args.max_seq_length)]
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        all_ent = torch.tensor([f.input_ent for f in eval_features],
                               dtype=torch.long)
        all_ent_masks = torch.tensor([f.ent_mask for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_ent, all_ent_masks,
                                  all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        if mark:
            output_eval_file = os.path.join(
                args.output_dir,
                "eval_results_{}.txt".format(x.split("_")[-1]))
            output_file_pred = os.path.join(
                args.output_dir, "eval_pred_{}.txt".format(x.split("_")[-1]))
            output_file_glod = os.path.join(
                args.output_dir, "eval_gold_{}.txt".format(x.split("_")[-1]))
        else:
            output_eval_file = os.path.join(
                args.output_dir,
                "test_results_{}.txt".format(x.split("_")[-1]))
            output_file_pred = os.path.join(
                args.output_dir, "test_pred_{}.txt".format(x.split("_")[-1]))
            output_file_glod = os.path.join(
                args.output_dir, "test_gold_{}.txt".format(x.split("_")[-1]))

        fpred = open(output_file_pred, "w")
        fgold = open(output_file_glod, "w")

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        for input_ids, input_mask, segment_ids, input_ent, ent_mask, label_ids in eval_dataloader:
            input_ent = embed(input_ent + 1)  # -1 -> 0
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            input_ent = input_ent.to(device)
            ent_mask = ent_mask.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      input_ent, ent_mask, label_ids)
                logits = model(input_ids, segment_ids, input_mask, input_ent,
                               ent_mask)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy, pred = accuracy(logits, label_ids)
            for a, b in zip(pred, label_ids):
                fgold.write("{}\n".format(b))
                fpred.write("{}\n".format(a))

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples

        result = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy}

        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
Beispiel #2
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--ernie_model",
                        default=None,
                        type=str,
                        required=True,
                        help="Ernie pre-trained model")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        default=False,
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        default=False,
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--threshold', type=float, default=.1)

    args = parser.parse_args()

    processors = SemevalProcessor

    num_labels_task = 3

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size /
                                args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    os.makedirs(args.output_dir, exist_ok=True)

    processor = processors()
    num_labels = num_labels_task
    label_list = None

    tokenizer = BertTokenizer.from_pretrained(args.ernie_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_steps = None
    train_examples, label_list = processor.get_train_examples(args.data_dir)
    num_train_steps = int(
        len(train_examples) / args.train_batch_size /
        args.gradient_accumulation_steps * args.num_train_epochs)

    # Prepare model
    model, _ = BertForSequenceClassification.from_pretrained(
        args.ernie_model,
        cache_dir=PYTORCH_PRETRAINED_BERT_CACHE /
        'distributed_{}'.format(args.local_rank),
        num_labels=num_labels)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_grad = [
        'bert.encoder.layer.11.output.dense_ent',
        'bert.encoder.layer.11.output.LayerNorm_ent'
    ]
    param_optimizer = [(n, p) for n, p in param_optimizer
                       if not any(nd in n for nd in no_grad)]
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    t_total = num_train_steps
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=t_total)
    global_step = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer,
                                                      args.threshold)

        vecs = []
        vecs.append([0] * 100)
        logger.info("Loading entity embedding.")
        with open("kg_embed/entity2vec.vec", 'r') as fin:
            for line in fin:
                vec = line.strip().split('\t')
                vec = [float(x) for x in vec]
                vecs.append(vec)
        embed = torch.FloatTensor(vecs)
        embed = torch.nn.Embedding.from_pretrained(embed)
        #         embed = torch.nn.Embedding(5041175, 100)

        logger.info("Shape of entity embedding: " + str(embed.weight.size()))
        del vecs

        if args.do_eval:
            eval_examples = processor.get_dev_examples(args.data_dir)
            dev = convert_examples_to_features(eval_examples, label_list,
                                               args.max_seq_length, tokenizer,
                                               args.threshold)

            eval_features = dev

            logger.info("Eval  Num examples = %d", len(eval_examples))
            logger.info("Eval  Batch size = %d", args.train_batch_size)
            all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                         dtype=torch.long)
            all_input_mask = torch.tensor(
                [f.input_mask for f in eval_features], dtype=torch.long)
            all_segment_ids = torch.tensor(
                [f.segment_ids for f in eval_features], dtype=torch.long)
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.long)
            all_ent = torch.tensor([f.input_ent for f in eval_features],
                                   dtype=torch.long)
            all_ent_masks = torch.tensor([f.ent_mask for f in eval_features],
                                         dtype=torch.long)
            eval_data = TensorDataset(all_input_ids, all_input_mask,
                                      all_segment_ids, all_ent, all_ent_masks,
                                      all_label_ids)
            # Run prediction for full data
            eval_sampler = SequentialSampler(eval_data)
            eval_dataloader = DataLoader(eval_data,
                                         sampler=eval_sampler,
                                         batch_size=args.train_batch_size)

        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        all_ent = torch.tensor([f.input_ent for f in train_features],
                               dtype=torch.long)
        all_ent_masks = torch.tensor([f.ent_mask for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_ent, all_ent_masks,
                                   all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        output_loss_file = os.path.join(args.output_dir, "loss")
        loss_fout = open(output_loss_file, 'w')
        model.train()
        max_acc = 0
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            model.train()
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(train_dataloader):
                batch = tuple(
                    t.to(device) if i != 3 else t for i, t in enumerate(batch))
                input_ids, input_mask, segment_ids, input_ent, ent_mask, label_ids = batch
                input_ent = embed(input_ent + 1).to(device)  # -1 -> 0
                loss = model(input_ids, segment_ids, input_mask,
                             input_ent.half(), ent_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                loss_fout.write("{}\n".format(loss.item()))
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    # modify learning rate with special warm up BERT uses
                    lr_this_step = args.learning_rate * warmup_linear(
                        global_step / t_total, args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

            if args.do_eval:
                logger.info("***** Running evaluation *****")
                output_eval_file = os.path.join(
                    args.output_dir, "eval_results_{}.txt".format(global_step))
                model.eval()
                eval_loss, eval_accuracy = 0, 0
                nb_eval_steps, nb_eval_examples = 0, 0
                for input_ids, input_mask, segment_ids, input_ent, ent_mask, label_ids in eval_dataloader:
                    input_ent = embed(input_ent + 1)  # -1 -> 0
                    input_ids = input_ids.to(device)
                    input_mask = input_mask.to(device)
                    segment_ids = segment_ids.to(device)
                    input_ent = input_ent.to(device)
                    ent_mask = ent_mask.to(device)
                    label_ids = label_ids.to(device)

                    with torch.no_grad():
                        tmp_eval_loss = model(input_ids, segment_ids,
                                              input_mask, input_ent, ent_mask,
                                              label_ids)
                        logits = model(input_ids, segment_ids, input_mask,
                                       input_ent, ent_mask)

                    logits = logits.detach().cpu().numpy()
                    label_ids = label_ids.to('cpu').numpy()
                    tmp_eval_accuracy = accuracy(logits, label_ids)

                    eval_loss += tmp_eval_loss.mean().item()
                    eval_accuracy += tmp_eval_accuracy

                    nb_eval_examples += input_ids.size(0)
                    nb_eval_steps += 1

                eval_loss = eval_loss / nb_eval_steps
                eval_accuracy = eval_accuracy / nb_eval_examples
                max_acc = max(max_acc, eval_accuracy)

                result = {
                    'eval_loss': eval_loss,
                    'eval_accuracy': eval_accuracy,
                    'max_accuracy': max_acc
                }

                with open(output_eval_file, "w") as writer:
                    logger.info("***** Eval results *****")
                    for key in sorted(result.keys()):
                        logger.info("  %s = %s", key, str(result[key]))
                        writer.write("%s = %s\n" % (key, str(result[key])))
Beispiel #3
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--ernie_model",
                        default=None,
                        type=str,
                        required=True,
                        help="Ernie pre-trained model")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        default=False,
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=16,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        default=False,
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--threshold', type=float, default=.3)
    parser.add_argument("--vec_file",
                        default=None,
                        type=str,
                        required=True,
                        help="File with embeddings")
    parser.add_argument("--qid_file",
                        default=None,
                        type=str,
                        required=True,
                        help="File with qid mapping")
    parser.add_argument("--use_lim_ents",
                        default=None,
                        type=str,
                        required=True,
                        help="Whether to use limited entities")

    args = parser.parse_args()

    processors = FewrelProcessor

    num_labels_task = 80

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size /
                                args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    os.makedirs(args.output_dir, exist_ok=True)

    processor = processors()
    num_labels = num_labels_task
    label_list = None

    tokenizer = BertTokenizer.from_pretrained(args.ernie_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_steps = None
    train_examples, label_list = processor.get_train_examples(args.data_dir)
    num_train_steps = int(
        len(train_examples) / args.train_batch_size /
        args.gradient_accumulation_steps * args.num_train_epochs)

    # Prepare model
    model, _ = BertForSequenceClassification.from_pretrained(
        args.ernie_model,
        cache_dir=PYTORCH_PRETRAINED_BERT_CACHE /
        'distributed_{}'.format(args.local_rank),
        num_labels=num_labels)
    # if args.fp16:
    #     model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_grad = [
        'bert.encoder.layer.11.output.dense_ent',
        'bert.encoder.layer.11.output.LayerNorm_ent'
    ]
    param_optimizer = [(n, p) for n, p in param_optimizer
                       if not any(nd in n for nd in no_grad)]
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    t_total = num_train_steps
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
    if args.fp16:
        try:
            #from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False)
        if args.loss_scale == 0:
            model, optimizer = amp.initialize(model, optimizer, opt_level="O2")
            # optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            model, optimizer = amp.initialize(model,
                                              optimizer,
                                              opt_level="O2",
                                              loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=t_total)
    global_step = 0
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer,
            args.threshold, args.qid_file)

        # check for limited ents
        lim_ents = []
        lim_check = (args.use_lim_ents == "y")
        if lim_check:
            lim_ents = lim_ent_map(0, "kg_embeddings/dbp_eid_2_wd_eid.txt")
            logger.info(
                "Limited entities flag is on. Count of unique entities considered: "
                + str(len(lim_ents)))

        vecs = []
        vecs.append([0] * 100)  # CLS
        lineindex = 1
        uid_map = {}
        logger.info("Reading embeddings file.")
        with open(args.vec_file, 'r') as fin:
            for line in fin:
                vec = line.strip().split('\t')
                # first element is unique id
                uniqid = int(vec[0])
                # map line index to unique id
                uid_map[uniqid] = lineindex
                # increment line index
                lineindex = lineindex + 1
                if (lim_check and (uniqid in lim_ents)) or not lim_check:
                    vec = [float(x) for x in vec[1:101]]
                else:
                    vec = vecs[0]
                vecs.append(vec)
        embed = torch.FloatTensor(vecs)
        embed = torch.nn.Embedding.from_pretrained(embed)
        #embed = torch.nn.Embedding(5041175, 100)

        logger.info("Shape of entity embedding: " + str(embed.weight.size()))
        del vecs

        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        all_ent = torch.tensor([f.input_ent for f in train_features],
                               dtype=torch.long)
        all_ent_masks = torch.tensor([f.ent_mask for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_ent, all_ent_masks,
                                   all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        output_loss_file = os.path.join(args.output_dir, "loss")
        loss_fout = open(output_loss_file, 'w')
        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(
                    t.to(device) if i != 3 else t for i, t in enumerate(batch))
                input_ids, input_mask, segment_ids, input_ent, ent_mask, label_ids = batch
                input_ent = embed(input_ent + 1).to(device)  # -1 -> 0
                loss = model(input_ids, segment_ids, input_mask,
                             input_ent.half(), ent_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    try:
                        from apex import amp
                    except ImportError:
                        raise ImportError(
                            "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                        )
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()

                loss_fout.write("{}\n".format(loss.item()))
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    # modify learning rate with special warm up BERT uses
                    lr_this_step = args.learning_rate * warmup_linear(
                        global_step / t_total, args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
            model_to_save = model.module if hasattr(model, 'module') else model
            output_model_file = os.path.join(
                args.output_dir, "pytorch_model.bin_{}".format(global_step))
            torch.save(model_to_save.state_dict(), output_model_file)

        # Save a trained model
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
        torch.save(model_to_save.state_dict(), output_model_file)
Beispiel #4
0
def main():
    device = get_device()
    if NUM_LABELS == 2:
        class_names = ['True', 'Fake']
    else:
        class_names = [
            'True', 'Mostly-true', 'Half-true', 'Barely-true', 'False',
            'Pants-fire'
        ]

    data_processor = CovidDataProcessor()
    labels, statements = data_processor.load_dataset()

    labels = {
        'train':
        CovidDataProcessor.convert_labels(NUM_LABELS, labels['train']),
        'test':
        CovidDataProcessor.convert_labels(NUM_LABELS, labels['test']),
        'validation':
        CovidDataProcessor.convert_labels(NUM_LABELS, labels['validation'])
    }

    # Load pre-trained model tokenizer
    tokenizer = BertTokenizer.from_pretrained(ERNIE_BASE_PATH,
                                              do_lower_case=True)

    with open('embed.txt', 'rb') as f:
        embed = pickle.load(f)
    with open('entity2id.txt', 'rb') as f:
        entity2id = pickle.load(f)
    with open('ent_map.txt', 'rb') as f:
        ent_map = pickle.load(f)

    # # currently all saved dataloader is generated with batch_size = 4, if change to other batch_size, need to regenerate
    # if Path('covid_train_dataloader.txt').is_file():
    #     with open('covid_train_dataloader.txt', 'rb') as ff:
    #         train_dataloader = pickle.load(ff)
    # else:
    #     print('generating train_dataloader')
    #     train_dataloader = CovidDataProcessor.get_ernie_dataloader(statements['train'], labels['train'], MAX_LEN,
    #                                                                tokenizer, BATCH_SIZE, entity2id, ent_map)
    #     with open('covid_train_dataloader.txt', 'wb') as ff:
    #         pickle.dump(train_dataloader, ff)
    #
    # if Path('covid_test_dataloader.txt').is_file():
    #     with open('covid_test_dataloader.txt', 'rb') as ff:
    #         test_dataloader = pickle.load(ff)
    # else:
    #     print('generating test_dataloader')
    #     test_dataloader = CovidDataProcessor.get_ernie_dataloader(statements['test'], labels['test'], MAX_LEN,
    #                                                               tokenizer, BATCH_SIZE, entity2id, ent_map)
    #     with open('covid_test_dataloader.txt', 'wb') as ff:
    #         pickle.dump(test_dataloader, ff)
    #
    # if Path('covid_val_dataloader.txt').is_file():
    #     with open('covid_val_dataloader.txt', 'rb') as ff:
    #         validation_dataloader = pickle.load(ff)
    # else:
    #     print('generating validation_dataloader')
    #     validation_dataloader = CovidDataProcessor.get_ernie_dataloader(statements['validation'], labels['validation'],
    #                                                                     MAX_LEN, tokenizer, BATCH_SIZE, entity2id,
    #                                                                     ent_map)
    #     with open('covid_val_dataloader.txt', 'wb') as ff:
    #         pickle.dump(validation_dataloader, ff)

    # currently all saved dataloader is generated with batch_size = 4, if change to other batch_size, need to regenerate
    # we now try to give RandomSampler to dataloader
    # if Path('covid_train_dataloader_random.txt').is_file():
    #     with open('covid_train_dataloader_random.txt', 'rb') as ff:
    #         train_dataloader = pickle.load(ff)
    # else:
    #     print('generating train_dataloader')
    #     train_dataloader = CovidDataProcessor.get_ernie_dataloader(statements['train'], labels['train'], MAX_LEN,
    #                                                                tokenizer, BATCH_SIZE, entity2id, ent_map)
    #     with open('covid_train_dataloader_random.txt', 'wb') as ff:
    #         pickle.dump(train_dataloader, ff)
    #
    # if Path('covid_test_dataloader_random.txt').is_file():
    #     with open('covid_test_dataloader_random.txt', 'rb') as ff:
    #         test_dataloader = pickle.load(ff)
    # else:
    #     print('generating test_dataloader')
    #     test_dataloader = CovidDataProcessor.get_ernie_dataloader(statements['test'], labels['test'], MAX_LEN,
    #                                                               tokenizer, BATCH_SIZE, entity2id, ent_map)
    #     with open('covid_test_dataloader_random.txt', 'wb') as ff:
    #         pickle.dump(test_dataloader, ff)
    #
    # if Path('covid_val_dataloader.txt_random').is_file():
    #     with open('covid_val_dataloader.txt_random', 'rb') as ff:
    #         validation_dataloader = pickle.load(ff)
    # else:
    #     print('generating validation_dataloader')
    #     validation_dataloader = CovidDataProcessor.get_ernie_dataloader(statements['validation'],
    #                                                                     labels['validation'],
    #                                                                     MAX_LEN, tokenizer, BATCH_SIZE, entity2id,
    #                                                                     ent_map)
    #     with open('covid_val_dataloader.txt_random', 'wb') as ff:
    #         pickle.dump(validation_dataloader, ff)

    # # all liar saved dataloader is generated with batch_size = 2, if change to other batch_size, need to regenerate
    # if Path('liar_train_dataloader.txt').is_file():
    #     with open('liar_train_dataloader.txt', 'rb') as ff:
    #         train_dataloader = pickle.load(ff)
    # else:
    #     print('generating train_dataloader')
    #     train_dataloader = CovidDataProcessor.get_ernie_dataloader(statements['train'], labels['train'], MAX_LEN,
    #                                                                tokenizer, BATCH_SIZE, entity2id, ent_map)
    #     with open('liar_train_dataloader.txt', 'wb') as ff:
    #         pickle.dump(train_dataloader, ff)
    #
    # if Path('liar_test_dataloader.txt').is_file():
    #     with open('liar_test_dataloader.txt', 'rb') as ff:
    #         test_dataloader = pickle.load(ff)
    # else:
    #     print('generating test_dataloader')
    #     test_dataloader = CovidDataProcessor.get_ernie_dataloader(statements['test'], labels['test'], MAX_LEN,
    #                                                               tokenizer, BATCH_SIZE, entity2id, ent_map)
    #     with open('liar_test_dataloader.txt', 'wb') as ff:
    #         pickle.dump(test_dataloader, ff)
    #
    # if Path('liar_val_dataloader.txt').is_file():
    #     with open('liar_val_dataloader.txt', 'rb') as ff:
    #         validation_dataloader = pickle.load(ff)
    # else:
    #     print('generating validation_dataloader')
    #     validation_dataloader = CovidDataProcessor.get_ernie_dataloader(statements['validation'], labels['validation'],
    #                                                                     MAX_LEN, tokenizer, BATCH_SIZE, entity2id,
    #                                                                     ent_map)
    #     with open('liar_val_dataloader.txt', 'wb') as ff:
    #         pickle.dump(validation_dataloader, ff)

    # above is when num_labels = 6, now consider binary cases for liar
    if Path('binary_liar_train_dataloader.txt').is_file():
        with open('binary_liar_train_dataloader.txt', 'rb') as ff:
            train_dataloader = pickle.load(ff)
    else:
        print('generating train_dataloader')
        train_dataloader = CovidDataProcessor.get_ernie_dataloader(
            statements['train'], labels['train'], MAX_LEN, tokenizer,
            BATCH_SIZE, entity2id, ent_map)
        with open('binary_liar_train_dataloader.txt', 'wb') as ff:
            pickle.dump(train_dataloader, ff)

    if Path('binary_liar_test_dataloader.txt').is_file():
        with open('binary_liar_test_dataloader.txt', 'rb') as ff:
            test_dataloader = pickle.load(ff)
    else:
        print('generating test_dataloader')
        test_dataloader = CovidDataProcessor.get_ernie_dataloader(
            statements['test'], labels['test'], MAX_LEN, tokenizer, BATCH_SIZE,
            entity2id, ent_map)
        with open('binary_liar_test_dataloader.txt', 'wb') as ff:
            pickle.dump(test_dataloader, ff)

    if Path('binary_liar_val_dataloader.txt').is_file():
        with open('binary_liar_val_dataloader.txt', 'rb') as ff:
            validation_dataloader = pickle.load(ff)
    else:
        print('generating validation_dataloader')
        validation_dataloader = CovidDataProcessor.get_ernie_dataloader(
            statements['validation'], labels['validation'], MAX_LEN, tokenizer,
            BATCH_SIZE, entity2id, ent_map)
        with open('binary_liar_val_dataloader.txt', 'wb') as ff:
            pickle.dump(validation_dataloader, ff)

    loss_fn = torch.nn.CrossEntropyLoss().to(device)

    # Train model
    model, _ = BertForSequenceClassification.from_pretrained(
        ERNIE_BASE_PATH, num_labels=NUM_LABELS)
    model.to(device)

    ErnieModel.train_model(model, train_dataloader, validation_dataloader,
                           EPOCHS, device, loss_fn, embed)

    # evaluate model on test dataset
    test_acc, test_loss = ErnieModel.eval_model(model, test_dataloader, device,
                                                embed)
    print('test accuracy: ', test_acc.item())

    # predictions
    pred, test_labels = ErnieModel.get_predictions(model, test_dataloader,
                                                   device, embed)

    print(
        classification_report(test_labels,
                              pred,
                              target_names=class_names,
                              digits=4))