Beispiel #1
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--ernie_model", default=None, type=str, required=True,
                        help="Ernie pre-trained model")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_lower_case",
                        default=False,
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        #default=5e-2,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument('--fp16',
                        default=False,
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--threshold', type=float, default=.3)
    ##########ADD##
    parser.add_argument("--K_V_dim",
                        type=int,
                        default=100,
                        help="Key and Value dim == KG representation dim")

    parser.add_argument("--Q_dim",
                        type=int,
                        default=768,
                        help="Query dim == Bert six output layer representation dim")
    parser.add_argument('--graphsage',
                        default=False,
                        action='store_true',
                        help="Whether to use Attention GraphSage instead of GAT")
    parser.add_argument('--self_att',
                        default=True,
                        action='store_true',
                        help="Whether to use GAT")
    parser.add_argument('--data_token',
                        type=str,
                        default='None',
                        help="Using token ids")
    ###############

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
        print(n_gpu)
        print(device)
        #exit()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    os.makedirs(args.output_dir, exist_ok=True)

    processor = TypingProcessor()

    #tokenizer_label = BertTokenizer_label.from_pretrained(args.ernie_model, do_lower_case=args.do_lower_case)
    #tokenizer = BertTokenizer.from_pretrained(args.ernie_model, do_lower_case=args.do_lower_case)
    tokenizer_label = RobertaTokenizer_label.from_pretrained(args.ernie_model)
    tokenizer = RobertaTokenizer.from_pretrained(args.ernie_model)

    train_examples = None
    num_train_steps = None
    train_examples, label_list, d = processor.get_train_examples(args.data_dir)
    label_list = sorted(label_list)
    #class_weight = [min(d[x], 100) for x in label_list]
    #logger.info(class_weight)
    S = []
    for l in label_list:
        s = []
        for ll in label_list:
            if ll in l:
                s.append(1.)
            else:
                s.append(0.)
        S.append(s)
    num_train_steps = int(
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)

    # Prepare model
    model, _ = BertForEntityTyping.from_pretrained(args.ernie_model,
              cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank),
              num_labels = len(label_list), args=args)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_grad = ['bert.encoder.layer.11.output.dense_ent', 'bert.encoder.layer.11.output.LayerNorm_ent']
    param_optimizer = [(n, p) for n, p in param_optimizer if not any(nd in n for nd in no_grad)]
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
    t_total = num_train_steps
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=t_total)


    global_step = 0

    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer_label, tokenizer, args.threshold)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_input_ent = torch.tensor([f.input_ent for f in train_features], dtype=torch.long)
        all_ent_mask = torch.tensor([f.ent_mask for f in train_features], dtype=torch.long)
        all_labels = torch.tensor([f.labels for f in train_features], dtype=torch.float)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_input_ent, all_ent_mask, all_labels)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        output_loss_file = os.path.join(args.output_dir, "loss")
        loss_fout = open(output_loss_file, 'w')
        model.train()
        #######
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        pred = []
        true = []
        #######
        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) if i != 3 else t for i, t in enumerate(batch))
                input_ids, input_mask, segment_ids, input_ent, ent_mask, labels = batch

                input_ent +=1
                k_1, v_1, k_2, v_2 = load_k_v_queryR_small(input_ent)

                #loss = model(input_ids, segment_ids, input_mask, input_ent.float(), ent_mask, labels.half(), k_1.half(), v_1.half(), k_2.half(), v_2.half())
                ###

                #######
                loss, logits = model(input_ids, segment_ids, input_mask, input_ent.float(), ent_mask, labels.half(), k_1.half(), v_1.half(), k_2.half(), v_2.half())
                #loss, logits = model(input_ids, segment_ids, input_mask, input_ent, ent_mask, labels, k_1.half(), v_1.half(), k_2.half(), v_2.half())
                tmp_eval_accuracy, tmp_pred, tmp_true = accuracy(logits, labels)
                pred.extend(tmp_pred)
                true.extend(tmp_true)

                eval_loss += loss.mean().item()
                eval_accuracy += tmp_eval_accuracy

                nb_eval_examples += input_ids.size(0)
                nb_eval_steps += 1
                #######

                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                loss_fout.write("{}\n".format(loss.item()*args.gradient_accumulation_steps))
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    # modify learning rate with special warm up BERT uses
                    lr_this_step = args.learning_rate * warmup_linear(global_step/t_total, args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
                    if global_step % 150 == 0 and global_step > 0:
                        model_to_save = model.module if hasattr(model, 'module') else model
                        output_model_file = os.path.join(args.output_dir, "pytorch_model.bin_{}".format(global_step))
                        torch.save(model_to_save.state_dict(), output_model_file)


            model_to_save = model.module if hasattr(model, 'module') else model
            output_model_file = os.path.join(args.output_dir, "pytorch_model.bin_{}".format(epoch))
            torch.save(model_to_save.state_dict(), output_model_file)

            ######################
            def f1(p, r):
                if r == 0.:
                    return 0.
                return 2 * p * r / float( p + r )
            def loose_macro(true, pred):
                num_entities = len(true)
                p = 0.
                r = 0.
                for true_labels, predicted_labels in zip(true, pred):
                    if len(predicted_labels) > 0:
                        p += len(set(predicted_labels).intersection(set(true_labels))) / float(len(predicted_labels))
                    if len(true_labels):
                        r += len(set(predicted_labels).intersection(set(true_labels))) / float(len(true_labels))
                precision = p / num_entities
                recall = r / num_entities
                return precision, recall, f1( precision, recall)
            def loose_micro(true, pred):
                num_predicted_labels = 0.
                num_true_labels = 0.
                num_correct_labels = 0.
                for true_labels, predicted_labels in zip(true, pred):
                    num_predicted_labels += len(predicted_labels)
                    num_true_labels += len(true_labels)
                    num_correct_labels += len(set(predicted_labels).intersection(set(true_labels)))
                if num_predicted_labels > 0:
                    precision = num_correct_labels / num_predicted_labels
                else:
                    precision = 0.
                recall = num_correct_labels / num_true_labels
                return precision, recall, f1( precision, recall)
            ######################
            #######
            eval_loss = eval_loss / nb_eval_steps
            eval_accuracy = eval_accuracy / nb_eval_examples
            print("============")
            print("loss:",eval_loss)
            print("acc:",eval_accuracy)
            print('macro:', loose_macro(true, pred))
            print('micro:', loose_micro(true, pred))
            print("============")
            #######


        '''
        ####################################################
        ####################################################
        ####################################################
        print("####################################################")
        print("####################################################")
        print("################Eval on Train data##################")
        print("####################################################")
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        pred = []
        true = []
        #for epoch in trange(int(args.num_train_epochs), desc="Epoch"): #same eval values!
        for epoch in trange(int(2), desc="Epoch"): #same eval values!
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) if i != 3 else t for i, t in enumerate(batch))
                input_ids, input_mask, segment_ids, input_ent, ent_mask, labels = batch

                input_ent +=1
                k_1, v_1, k_2, v_2 = load_k_v_queryR_small(input_ent)

                #loss = model(input_ids, segment_ids, input_mask, input_ent.float(), ent_mask, labels.half(), k_1.half(), v_1.half(), k_2.half(), v_2.half())
                ###

                #######
                loss, logits = model(input_ids, segment_ids, input_mask, input_ent.float(), ent_mask, labels.half(), k_1.half(), v_1.half(), k_2.half(), v_2.half())
                tmp_eval_accuracy, tmp_pred, tmp_true = accuracy(logits, labels)
                pred.extend(tmp_pred)
                true.extend(tmp_true)

                eval_loss += loss.mean().item()
                eval_accuracy += tmp_eval_accuracy

                nb_eval_examples += input_ids.size(0)
                nb_eval_steps += 1
                #######

                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1


            eval_loss = eval_loss / nb_eval_steps
            eval_accuracy = eval_accuracy / nb_eval_examples
            print("============")
            print("loss:",eval_loss)
            print("acc:",eval_accuracy)
            print('macro:', loose_macro(true, pred))
            print('micro:', loose_micro(true, pred))
            print("============")
        ####################################################
        ####################################################
        ####################################################
        '''

    exit(0)
Beispiel #2
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--ernie_model",
                        default=None,
                        type=str,
                        required=True,
                        help="Ernie pre-trained model")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        default=False,
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        default=False,
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--threshold', type=float, default=.3)
    ##########ADD#######
    parser.add_argument("--K_V_dim",
                        type=int,
                        default=100,
                        help="Key and Value dim == KG representation dim")

    parser.add_argument(
        "--Q_dim",
        type=int,
        default=768,
        help="Query dim == Bert six output layer representation dim")
    parser.add_argument(
        '--graphsage',
        default=False,
        action='store_true',
        help="Whether to use Attention GraphSage instead of GAT")
    parser.add_argument('--self_att',
                        default=True,
                        action='store_true',
                        help="Whether to use GAT")
    parser.add_argument('--data_token',
                        type=str,
                        default='None',
                        help="Using token ids")
    ###################

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    os.makedirs(args.output_dir, exist_ok=True)

    processor = TypingProcessor()

    #tokenizer_label = BertTokenizer_label.from_pretrained(args.ernie_model, do_lower_case=args.do_lower_case)
    #tokenizer = BertTokenizer.from_pretrained(args.ernie_model, do_lower_case=args.do_lower_case)
    tokenizer_label = RobertaTokenizer_label.from_pretrained(args.ernie_model)
    tokenizer = RobertaTokenizer.from_pretrained(args.ernie_model)

    _, label_list, _ = processor.get_train_examples(args.data_dir)
    label_list = sorted(label_list)
    #class_weight = [min(d[x], 100) for x in label_list]
    #logger.info(class_weight)
    S = []
    for l in label_list:
        s = []
        for ll in label_list:
            if ll in l:
                s.append(1.)
            else:
                s.append(0.)
        S.append(s)

    # Prepare model
    filenames = os.listdir(args.output_dir)
    filenames = [x for x in filenames if "pytorch_model.bin_" in x]

    file_mark = []
    for x in filenames:
        file_mark.append([x, True])
        file_mark.append([x, False])

    for x, mark in file_mark:
        print(x, mark)
        output_model_file = os.path.join(args.output_dir, x)
        model_state_dict = torch.load(output_model_file)
        model, _ = BertForEntityTyping.from_pretrained(
            args.ernie_model,
            state_dict=model_state_dict,
            num_labels=len(label_list),
            args=args)
        model.to(device)
        if args.fp16:
            model.half()

        if mark:
            eval_examples = processor.get_dev_examples(args.data_dir)
            #eval_examples, _, _ = processor.get_train_examples(args.data_dir)
        else:
            eval_examples = processor.get_test_examples(args.data_dir)
            #eval_examples, _, _ = processor.get_train_examples(args.data_dir)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer_label,
                                                     tokenizer, args.threshold)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        # zeros = [0 for _ in range(args.max_seq_length)]
        # zeros_ent = [0 for _ in range(100)]
        # zeros_ent = [zeros_ent for _ in range(args.max_seq_length)]
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_input_ent = torch.tensor([f.input_ent for f in eval_features],
                                     dtype=torch.long)
        all_ent_mask = torch.tensor([f.ent_mask for f in eval_features],
                                    dtype=torch.long)
        all_labels = torch.tensor([f.labels for f in eval_features],
                                  dtype=torch.float)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_input_ent, all_ent_mask,
                                  all_labels)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        pred = []
        true = []
        #for input_ids, input_mask, segment_ids, input_ent, ent_mask, labels in eval_dataloader:
        ###
        for step, batch in enumerate(tqdm(eval_dataloader, desc="Iteration")):
            batch = tuple(
                t.to(device) if i != 3 else t for i, t in enumerate(batch))
            input_ids, input_mask, segment_ids, input_ent, ent_mask, labels = batch
            ###
            input_ent += 1
            k_1, v_1, k_2, v_2 = load_k_v_queryR_small(input_ent)

            with torch.no_grad():
                #tmp_eval_loss, _ = model(input_ids, segment_ids, input_mask, input_ent, ent_mask, labels, k_1, v_1, k_2, v_2)
                #logits = model(input_ids, segment_ids, input_mask, input_ent, ent_mask, None, k_1, v_1, k_2, v_2)
                if args.fp16:
                    tmp_eval_loss, _ = model(input_ids, segment_ids,
                                             input_mask, input_ent, ent_mask,
                                             labels.half(), k_1.half(),
                                             v_1.half(), k_2.half(),
                                             v_2.half())
                    logits = model(input_ids, segment_ids, input_mask,
                                   input_ent, ent_mask, None, k_1.half(),
                                   v_1.half(), k_2.half(), v_2.half())
                else:
                    tmp_eval_loss, _ = model(input_ids, segment_ids,
                                             input_mask, input_ent, ent_mask,
                                             labels, k_1, v_1, k_2, v_2)
                    logits = model(input_ids, segment_ids, input_mask,
                                   input_ent, ent_mask, None, k_1, v_1, k_2,
                                   v_2)

            logits = logits.detach().cpu().numpy()
            labels = labels.to('cpu').numpy()

            tmp_eval_accuracy, tmp_pred, tmp_true = accuracy(logits, labels)

            pred.extend(tmp_pred)
            true.extend(tmp_true)

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples

        def f1(p, r):
            if r == 0.:
                return 0.
            return 2 * p * r / float(p + r)

        def loose_macro(true, pred):
            num_entities = len(true)
            p = 0.
            r = 0.
            for true_labels, predicted_labels in zip(true, pred):
                if len(predicted_labels) > 0:
                    p += len(
                        set(predicted_labels).intersection(
                            set(true_labels))) / float(len(predicted_labels))
                if len(true_labels):
                    r += len(
                        set(predicted_labels).intersection(
                            set(true_labels))) / float(len(true_labels))
            precision = p / num_entities
            recall = r / num_entities
            return precision, recall, f1(precision, recall)

        def loose_micro(true, pred):
            num_predicted_labels = 0.
            num_true_labels = 0.
            num_correct_labels = 0.
            for true_labels, predicted_labels in zip(true, pred):
                num_predicted_labels += len(predicted_labels)
                num_true_labels += len(true_labels)
                num_correct_labels += len(
                    set(predicted_labels).intersection(set(true_labels)))
            if num_predicted_labels > 0:
                precision = num_correct_labels / num_predicted_labels
            else:
                precision = 0.
            recall = num_correct_labels / num_true_labels
            return precision, recall, f1(precision, recall)

        result = {
            'eval_loss': eval_loss,
            'eval_accuracy': eval_accuracy,
            'macro': loose_macro(true, pred),
            'micro': loose_micro(true, pred)
        }

        if mark:
            output_eval_file = os.path.join(
                args.output_dir,
                "eval_results_{}.txt".format(x.split("_")[-1]))
        else:
            output_eval_file = os.path.join(
                args.output_dir,
                "test_results_{}.txt".format(x.split("_")[-1]))
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

        #print("==================================")
        #print("==================================")
        #print("==================================")

    exit(0)
Beispiel #3
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--ernie_model", default=None, type=str, required=True,
                        help="Ernie pre-trained model")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_lower_case",
                        default=False,
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument('--fp16',
                        default=False,
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--threshold', type=float, default=.3)

    ##########ADD##
    parser.add_argument("--K_V_dim",
                        type=int,
                        default=100,
                        help="Key and Value dim == KG representation dim")

    parser.add_argument("--Q_dim",
                        type=int,
                        default=768,
                        help="Query dim == Bert six output layer representation dim")
    parser.add_argument('--graphsage',
                        default=False,
                        action='store_true',
                        help="Whether to use Attention GraphSage instead of GAT")
    parser.add_argument('--self_att',
                        default=True,
                        action='store_true',
                        help="Whether to use GAT")
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument('--data_token',
                        type=str,
                        default='None',
                        help="Using token ids")
    ###############

    args = parser.parse_args()

    processors = TacredProcessor

    num_labels_task = 80

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    os.makedirs(args.output_dir, exist_ok=True)


    processor = processors()
    label_list = None

    #tokenizer = BertTokenizer.from_pretrained(args.ernie_model, do_lower_case=args.do_lower_case)
    #tokenizer = RobertaTokenizer.from_pretrained(args.ernie_model, do_lower_case=args.do_lower_case)
    tokenizer = RobertaTokenizer.from_pretrained(args.ernie_model)

    train_examples = None
    num_train_steps = None
    train_examples, label_list = processor.get_train_examples(args.data_dir)
    num_labels = len(label_list)

    num_train_steps = int(
        len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)

    # Prepare model
    model, _ = BertForSequenceClassification.from_pretrained(args.ernie_model,
              cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank),
              num_labels = num_labels, args=args)

    ###
    '''
    if args.fp16:
        model.half()
    model.to(device)

    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_grad = ['bert.encoder.layer.11.output.dense_ent', 'bert.encoder.layer.11.output.LayerNorm_ent']
    param_optimizer = [(n, p) for n, p in param_optimizer if not any(nd in n for nd in no_grad)]
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
    t_total = num_train_steps
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=t_total)
    '''

    # Prepare optimizer
    t_total = num_train_steps
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()

    ###
    #if args.fp16:
    #    model.half()
    ###
    model.to(device)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    #no_decay = ['bias', 'LayerNorm.weight']
    no_grad = ['bert.encoder.layer.11.output.dense_ent', 'bert.encoder.layer.11.output.LayerNorm_ent']
    param_optimizer = [(n, p) for n, p in param_optimizer if not any(nd in n for nd in no_grad)]
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=int(t_total*0.1), num_training_steps=t_total)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)


    # multi-gpu training (should be after apex fp16 initialization)
    if n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)
    ###


    global_step = 0
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer, args.threshold)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)


        # zeros = [0 for _ in range(args.max_seq_length)]
        # zeros_ent = [0 for _ in range(100)]
        # zeros_ent = [zeros_ent for _ in range(args.max_seq_length)]
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
        all_ent = torch.tensor([f.input_ent for f in train_features], dtype=torch.long)
        all_ent_masks = torch.tensor([f.ent_mask for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_ent, all_ent_masks, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        output_loss_file = os.path.join(args.output_dir, "loss")
        loss_fout = open(output_loss_file, 'w')
        model.train()


        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) if i != 3 else t for i, t in enumerate(batch))
                input_ids, input_mask, segment_ids, input_ent, ent_mask, label_ids = batch
                #input_ent = embed(input_ent+1).to(device) # -1 -> 0
                input_ent = input_ent+1 # -1 -> 0

                #k,v = load_k_v_queryR_small(input_ent)
                k_1, v_1, k_2, v_2 = load_k_v_queryR_small(input_ent)


                #loss = model(input_ids, segment_ids, input_mask, input_ent.half(), ent_mask, label_ids, k.half(), v.half())
                loss = model(input_ids, segment_ids, input_mask, input_ent.float(), ent_mask, label_ids, k_1.half(), v_1.half(), k_2.half(), v_2.half())
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    ###
                    #optimizer.backward(loss)
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                    ###
                else:
                    loss.backward()

                loss_fout.write("{}\n".format(loss.item()))
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    # modify learning rate with special warm up BERT uses
                    ###
                    '''
                    lr_this_step = args.learning_rate * warmup_linear(global_step/t_total, args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
                    '''
                    if args.fp16:
                        torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                    else:
                        torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
                    optimizer.step()
                    scheduler.step()
                    model.zero_grad()
                    global_step += 1
                    ###
            model_to_save = model.module if hasattr(model, 'module') else model
            output_model_file = os.path.join(args.output_dir, "pytorch_model.bin_{}".format(global_step))
            torch.save(model_to_save.state_dict(), output_model_file)

        # Save a trained model
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
        torch.save(model_to_save.state_dict(), output_model_file)
Beispiel #4
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--ernie_model",
                        default=None,
                        type=str,
                        required=True,
                        help="Ernie pre-trained model")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        default=False,
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        default=False,
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--threshold', type=float, default=.3)
    ##########ADD##
    parser.add_argument("--K_V_dim",
                        type=int,
                        default=100,
                        help="Key and Value dim == KG representation dim")

    parser.add_argument(
        "--Q_dim",
        type=int,
        default=768,
        help="Query dim == Bert six output layer representation dim")
    parser.add_argument(
        '--graphsage',
        default=False,
        action='store_true',
        help="Whether to use Attention GraphSage instead of GAT")
    parser.add_argument('--self_att',
                        default=True,
                        action='store_true',
                        help="Whether to use GAT")
    ###############

    args = parser.parse_args()

    processors = FewrelProcessor

    num_labels_task = 80

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    processor = processors()
    num_labels = num_labels_task
    label_list = None

    tokenizer = RobertaTokenizer.from_pretrained(args.ernie_model)

    train_examples = None
    num_train_steps = None
    #train_examples, label_list = processor.get_train_examples(args.data_dir)
    '''
    vecs = []
    vecs.append([0]*100)
    with open("kg_embed/entity2vec.vec", 'r') as fin:
        for line in fin:
            vec = line.strip().split('\t')
            vec = [float(x) for x in vec]
            vecs.append(vec)
    embed = torch.FloatTensor(vecs)
    embed = torch.nn.Embedding.from_pretrained(embed)
    #embed = torch.nn.Embedding(5041175, 100)

    logger.info("Shape of entity embedding: "+str(embed.weight.size()))
    del vecs
    '''

    filenames = os.listdir(args.output_dir)
    filenames = [x for x in filenames if "pytorch_model.bin" in x]

    ###
    #filenames = [x for x in filenames if x in ["pytorch_model.bin_1750", "pytorch_model.bin_2000", "pytorch_model.bin_2250", "pytorch_model.bin_2500", "pytorch_model.bin_2750", "pytorch_model.bin_3000", "pytorch_model.bin_3250", "pytorch_model.bin_3500", "pytorch_model.bin_3750", "pytorch_model.bin_4000", "pytorch_model.bin_4250", "pytorch_model.bin_4500", "pytorch_model.bin_4750", "pytorch_model.bin_5000"] ]

    #filenames = [x for x in filenames if x in ["pytorch_model.bin_1750", "pytorch_model.bin_2000", "pytorch_model.bin_2250", "pytorch_model.bin_2500", "pytorch_model.bin_2750", "pytorch_model.bin_3000", "pytorch_model.bin_3250", "pytorch_model.bin_3500", "pytorch_model.bin_3750", "pytorch_model.bin_4000"] ]
    ###

    file_mark = []
    for x in filenames:
        #file_mark.append([x, True])
        file_mark.append([x, False])
    ###
    '''
    eval_examples = processor.get_dev_examples(args.data_dir)

    dev = convert_examples_to_features(
        eval_examples, label_list, args.max_seq_length, tokenizer, args.threshold)
    '''
    ###
    eval_examples = processor.get_test_examples(args.data_dir)

    test = convert_examples_to_features(eval_examples, label_list,
                                        args.max_seq_length, tokenizer,
                                        args.threshold)

    for x, mark in file_mark:
        print(x, mark)
        output_model_file = os.path.join(args.output_dir, x)
        model_state_dict = torch.load(output_model_file)
        #model, _ = BertForSequenceClassification.from_pretrained(args.ernie_model, state_dict=model_state_dict, num_labels=len(label_list), args=args)
        model, _ = BertForSequenceClassification.from_pretrained(
            args.ernie_model,
            state_dict=model_state_dict,
            num_labels=num_labels_task,
            args=args)

        #model.to(device)
        #print(device)

        if args.fp16:  #
            model.half()  #
        model.to(device)

        #print(model)
        #print(list(model.named_parameters()))
        #print("==")
        #print(list(model.bert.word_graph_attention.K_V_linear.weight))
        #exit()
        #for i in model.parameters():
        #    print(i)
        #exit()
        #for name, param in model.named_parameters():
        #    print(name,param.requires_grad)

        if mark:
            eval_features = dev
        else:
            eval_features = test
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        # zeros = [0 for _ in range(args.max_seq_length)]
        # zeros_ent = [0 for _ in range(100)]
        # zeros_ent = [zeros_ent for _ in range(args.max_seq_length)]
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([1 for f in eval_features],
                                     dtype=torch.long)
        #all_text = torch.tensor([f.text for f in eval_features], dtype=torch.long)
        all_ent = torch.tensor([f.input_ent for f in eval_features],
                               dtype=torch.long)
        all_ent_masks = torch.tensor([f.ent_mask for f in eval_features],
                                     dtype=torch.long)
        #eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_ent, all_ent_masks, all_label_ids)

        ###
        #output_label = torch.tensor([f.label for f in eval_features], dtype=torch.long)
        #output_text = torch.tensor([f.text for f in eval_features], dtype=torch.long)
        #output_ent = torch.tensor([f.ent for f in eval_features], dtype=torch.long)
        #output_ans = torch.tensor([f.ans for f in eval_features], dtype=torch.long)
        output_label_map = dict()
        output_text_map = dict()
        output_ent_map = dict()
        output_ans_map = dict()
        for i, f in enumerate(eval_features):
            output_label_map[i] = f.label
            output_text_map[i] = f.text
            output_ent_map[i] = f.ent
            output_ans_map[i] = f.ans
        output_label_id = torch.tensor(
            [f[0] for f in enumerate(eval_features)], dtype=torch.long)
        output_text_id = torch.tensor([f[0] for f in enumerate(eval_features)],
                                      dtype=torch.long)
        output_ent_id = torch.tensor([f[0] for f in enumerate(eval_features)],
                                     dtype=torch.long)
        output_ans_id = torch.tensor([f[0] for f in enumerate(eval_features)],
                                     dtype=torch.long)

        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_ent, all_ent_masks,
                                  all_label_ids, output_label_id,
                                  output_text_id, output_ent_id, output_ans_id)
        ###

        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        if mark:
            #output_eval_file = os.path.join(args.output_dir, "eval_results_{}.txt".format(x.split("_")[-1]))
            output_file_pred = os.path.join(
                args.output_dir, "eval_pred_{}.txt".format(x.split("_")[-1]))
            #output_file_glod = os.path.join(args.output_dir, "eval_gold_{}.txt".format(x.split("_")[-1]))
        else:
            #output_eval_file = os.path.join(args.output_dir, "test_results_{}.txt".format(x.split("_")[-1]))
            output_file_pred = os.path.join(
                args.output_dir, "test_pred_{}.txt".format(x.split("_")[-1]))
            #output_file_glod = os.path.join(args.output_dir, "test_gold_{}.txt".format(x.split("_")[-1]))

        fpred = open(output_file_pred, "w")
        #fgold = open(output_file_glod, "w")

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0

        save_data_list = list()
        counter = 0
        re_all = 0
        pre_all = 0
        f1_all = 0
        tp_all = 0
        fp_all = 0
        fn_all = 0
        tn_all = 0

        #ccc=0
        for input_ids, input_mask, segment_ids, input_ent, ent_mask, label_ids, output_label_id, output_text_id, output_ent_id, output_ans_id in eval_dataloader:
            ###
            #input_ent = embed(input_ent+1) # -1 -> 0
            ###
            input_ent = input_ent + 1

            output_ans = output_ans_map[int(output_ans_id)]
            if output_ans == None:
                #ccc+=1
                #print(ccc)
                #print("==1==")
                continue
            elif len(input_ent[input_ent != 0]) != len(output_ans):
                #print(len(input_ent[input_ent!=0]),len(output_ans))
                #ccc+=1
                #print(ccc)
                #exit()
                #print("==2==")
                continue

            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            input_ent = input_ent.to(device)
            ent_mask = ent_mask.to(device)
            label_ids = label_ids.to(device)

            #k, v = load_k_v_queryR(input_ent)
            k_1, v_1, new_input_ent, input_ent_nb, input_ent_r = load_k_v_queryR_small(
                input_ent)

            with torch.no_grad():
                output_gen_ids = model(input_ids, segment_ids, input_mask,
                                       input_ent, ent_mask, None, k_1.half(),
                                       v_1.half(), input_ent_nb)

                #Two entity in

                #output_ans = output_ans_map[int(output_ans_id)]
                if output_gen_ids == None:
                    print("None")
                    continue

                #examples_n = 0
                for i, ids_list_pre in enumerate(output_gen_ids):

                    ids_list_ans = output_ans[i]

                    if len(ids_list_pre) != len(ids_list_ans):
                        print("========")
                        print(ids_list_pre)
                        print(ids_list_ans)
                        print("========")
                        continue

                    #print("{}/{}".format(counter,329))

                    #ids_list_ans
                    #ids_list_pre
                    tp = 0
                    fp = 0
                    fn = 0
                    tn = 0
                    re = 0
                    pre = 0
                    f1 = 0
                    for idx, id in enumerate(ids_list_ans):
                        if id == -1:
                            if tp == 0 and fp == 0:
                                pre = 0
                            else:
                                pre = tp / (tp + fp)

                            if tp == 0 and fn == 0:
                                re = 0
                            else:
                                re = tp / (tp + fn)

                            if pre == 0 and re == 0:
                                f1 = 0
                            else:
                                f1 = float(2.0 * pre * re / (re + pre))
                        else:
                            if ids_list_ans[idx] == 1 and ids_list_pre[
                                    idx] == 1:
                                tp += 1
                            elif ids_list_ans[idx] == 0 and ids_list_pre[
                                    idx] == 1:
                                fp += 1
                            elif ids_list_ans[idx] == 0 and ids_list_pre[
                                    idx] == 0:
                                tn += 1
                            elif ids_list_ans[idx] == 1 and ids_list_pre[
                                    idx] == 0:
                                fn += 1

                    counter += 1
                    tp_all += tp
                    fp_all += fp
                    fn_all += fn
                    tn_all += tn
                    re_all += re
                    pre_all += pre
                    f1_all += f1

        pp = tp_all / (tp_all + fp_all)
        rr = tp_all / (tp_all + fn_all)
        ff = float(2.0 * pp * rr / (pp + rr))
        print("==============================")
        print("P:", pp)
        print("R:", rr)
        print("F1-micro:", ff)
        #print("---")
        #print("P:",re_all/counter)
        #print("R:",pre_all/counter)
        #print("F1-macro:",f1_all/counter)
        #print("F1-micro:",float(2.0*(pre_all/counter)*(re_all/counter)/(pre_all/counter+re_all/counter)))
        print("==============================")
        with open(output_file_pred, "w") as writer:
            logger.info("***** Results*****")
            fpred.write("P: {}\n".format(pp))
            fpred.write("R: {}\n".format(rr))
            fpred.write("F1-micro: {}\n".format(ff))
Beispiel #5
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--ernie_model",
                        default=None,
                        type=str,
                        required=True,
                        help="Ernie pre-trained model")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        default=False,
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        default=False,
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--threshold', type=float, default=.3)
    ##########ADD##
    parser.add_argument("--K_V_dim",
                        type=int,
                        default=100,
                        help="Key and Value dim == KG representation dim")

    parser.add_argument(
        "--Q_dim",
        type=int,
        default=768,
        help="Query dim == Bert six output layer representation dim")
    parser.add_argument(
        '--graphsage',
        default=False,
        action='store_true',
        help="Whether to use Attention GraphSage instead of GAT")
    parser.add_argument('--self_att',
                        default=True,
                        action='store_true',
                        help="Whether to use GAT")
    ###############

    args = parser.parse_args()

    processors = FewrelProcessor

    num_labels_task = 80

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    processor = processors()
    num_labels = num_labels_task
    label_list = None

    tokenizer = RobertaTokenizer.from_pretrained(args.ernie_model)

    train_examples = None
    num_train_steps = None
    #train_examples, label_list = processor.get_train_examples(args.data_dir)
    '''
    vecs = []
    vecs.append([0]*100)
    with open("kg_embed/entity2vec.vec", 'r') as fin:
        for line in fin:
            vec = line.strip().split('\t')
            vec = [float(x) for x in vec]
            vecs.append(vec)
    embed = torch.FloatTensor(vecs)
    embed = torch.nn.Embedding.from_pretrained(embed)
    #embed = torch.nn.Embedding(5041175, 100)

    logger.info("Shape of entity embedding: "+str(embed.weight.size()))
    del vecs
    '''

    filenames = os.listdir(args.output_dir)
    filenames = [x for x in filenames if "pytorch_model.bin" in x]

    ###
    #filenames = [x for x in filenames if x in ["pytorch_model.bin_1750", "pytorch_model.bin_2000", "pytorch_model.bin_2250", "pytorch_model.bin_2500", "pytorch_model.bin_2750", "pytorch_model.bin_3000", "pytorch_model.bin_3250", "pytorch_model.bin_3500", "pytorch_model.bin_3750", "pytorch_model.bin_4000", "pytorch_model.bin_4250", "pytorch_model.bin_4500", "pytorch_model.bin_4750", "pytorch_model.bin_5000"] ]

    #filenames = [x for x in filenames if x in ["pytorch_model.bin_1750", "pytorch_model.bin_2000", "pytorch_model.bin_2250", "pytorch_model.bin_2500", "pytorch_model.bin_2750", "pytorch_model.bin_3000", "pytorch_model.bin_3250", "pytorch_model.bin_3500", "pytorch_model.bin_3750", "pytorch_model.bin_4000"] ]
    ###

    file_mark = []
    for x in filenames:
        #file_mark.append([x, True])
        file_mark.append([x, False])
    ###
    '''
    eval_examples = processor.get_dev_examples(args.data_dir)

    dev = convert_examples_to_features(
        eval_examples, label_list, args.max_seq_length, tokenizer, args.threshold)
    '''
    ###
    eval_examples = processor.get_test_examples(args.data_dir)

    test = convert_examples_to_features(eval_examples, label_list,
                                        args.max_seq_length, tokenizer,
                                        args.threshold)

    for x, mark in file_mark:
        print(x, mark)
        output_model_file = os.path.join(args.output_dir, x)
        model_state_dict = torch.load(output_model_file)
        #model, _ = BertForSequenceClassification.from_pretrained(args.ernie_model, state_dict=model_state_dict, num_labels=len(label_list), args=args)
        model, _ = BertForSequenceClassification.from_pretrained(
            args.ernie_model,
            state_dict=model_state_dict,
            num_labels=num_labels_task,
            args=args)

        #model.to(device)
        #print(device)

        if args.fp16:  #
            model.half()  #
        model.to(device)

        #print(model)
        #print(list(model.named_parameters()))
        #print("==")
        #print(list(model.bert.word_graph_attention.K_V_linear.weight))
        #exit()
        #for i in model.parameters():
        #    print(i)
        #exit()
        #for name, param in model.named_parameters():
        #    print(name,param.requires_grad)

        if mark:
            eval_features = dev
        else:
            eval_features = test
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        # zeros = [0 for _ in range(args.max_seq_length)]
        # zeros_ent = [0 for _ in range(100)]
        # zeros_ent = [zeros_ent for _ in range(args.max_seq_length)]
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([1 for f in eval_features],
                                     dtype=torch.long)
        #all_text = torch.tensor([f.text for f in eval_features], dtype=torch.long)
        all_ent = torch.tensor([f.input_ent for f in eval_features],
                               dtype=torch.long)
        all_ent_masks = torch.tensor([f.ent_mask for f in eval_features],
                                     dtype=torch.long)
        #eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_ent, all_ent_masks, all_label_ids)

        ###
        #output_label = torch.tensor([f.label for f in eval_features], dtype=torch.long)
        #output_text = torch.tensor([f.text for f in eval_features], dtype=torch.long)
        #output_ent = torch.tensor([f.ent for f in eval_features], dtype=torch.long)
        #output_ans = torch.tensor([f.ans for f in eval_features], dtype=torch.long)
        output_label_map = dict()
        output_text_map = dict()
        output_ent_map = dict()
        output_ans_map = dict()
        for i, f in enumerate(eval_features):
            output_label_map[i] = f.label
            output_text_map[i] = f.text
            output_ent_map[i] = f.ent
            output_ans_map[i] = f.ans
        output_label_id = torch.tensor(
            [f[0] for f in enumerate(eval_features)], dtype=torch.long)
        output_text_id = torch.tensor([f[0] for f in enumerate(eval_features)],
                                      dtype=torch.long)
        output_ent_id = torch.tensor([f[0] for f in enumerate(eval_features)],
                                     dtype=torch.long)
        output_ans_id = torch.tensor([f[0] for f in enumerate(eval_features)],
                                     dtype=torch.long)

        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_ent, all_ent_masks,
                                  all_label_ids, output_label_id,
                                  output_text_id, output_ent_id, output_ans_id)
        ###

        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        if mark:
            #output_eval_file = os.path.join(args.output_dir, "eval_results_{}.txt".format(x.split("_")[-1]))
            output_file_pred = os.path.join(
                args.output_dir, "eval_pred_{}.txt".format(x.split("_")[-1]))
            #output_file_glod = os.path.join(args.output_dir, "eval_gold_{}.txt".format(x.split("_")[-1]))
        else:
            #output_eval_file = os.path.join(args.output_dir, "test_results_{}.txt".format(x.split("_")[-1]))
            output_file_pred = os.path.join(
                args.output_dir, "test_pred_{}.txt".format(x.split("_")[-1]))
            #output_file_glod = os.path.join(args.output_dir, "test_gold_{}.txt".format(x.split("_")[-1]))

        fpred = open(output_file_pred, "w")
        #fgold = open(output_file_glod, "w")

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0

        #logits_erine = torch.load('logits.pt') ###erine
        #i_index = 0 ###erine
        ###
        save_data_list = list()
        counter = 0
        acc_all = 0
        pre_all = 0
        f1_all = 0
        for input_ids, input_mask, segment_ids, input_ent, ent_mask, label_ids, output_label_id, output_text_id, output_ent_id, output_ans_id in eval_dataloader:
            ###
            #input_ent = embed(input_ent+1) # -1 -> 0
            ###
            input_ent = input_ent + 1

            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            input_ent = input_ent.to(device)
            ent_mask = ent_mask.to(device)
            label_ids = label_ids.to(device)

            #k, v = load_k_v_queryR(input_ent)
            k_1, v_1, new_input_ent, input_ent_nb, input_ent_r = load_k_v_queryR_small(
                input_ent)
            '''
            ###
            ##################################
            print("==============================")
            print("==============================")
            #text = input_ids[input_ids!=0]
            #text = tokenizer.convert_ids_to_tokens(text.tolist())
            #text = " ".join(text)
            #print("!!!!!!!!!!!!!!!!!!!!!!")
            output_label = str(output_label_map[int(output_label_id)])
            output_text = str(output_text_map[int(output_text_id)])
            output_ent = output_ent_map[int(output_ent_id)]
            #print(output_label)
            #print(output_text)
            #print(output_ent)
            #print("!!!!!!!!!!!!!!!!!!!!!!")
            try:
                #print(text)
                print(output_label)
                print("--")
                print(output_text)
                print("--")
                print(output_ent)
            except:
                print("Error")
                continue
            print("=========")

            for i_th, batch_i in enumerate(new_input_ent.tolist()):
                for k_th, ent in enumerate(batch_i):
                    try:
                        #print("{}:  E1:{} ({})".format(k_th, q2ent[id2q[int(ent)]], ent) )
                        print("{}:  E1:{} ({})".format(k_th, q2ent[id2q[int(ent)]], id2q[int(ent)]) )
                        print("-------------")
                        for j_th, n in enumerate(input_ent_nb.tolist()[k_th]):
                            #print("!!!!")
                            #print(input_ent_r.tolist()[k_th])
                            m = input_ent_r.tolist()[k_th][j_th]
                            #print(m)
                            #print("!!!!")
                            #if n==0 or j_th==0:
                            if n==0 or j_th==0 or m==0:
                                continue
                            #print("{}:  {} ({}) ".format(j_th-1, q2ent[id2q[int(n)]], n))
                            #print("{}:  {} ({}) ".format(j_th-1, q2ent[id2q[int(n)]], id2q[int(n)]))
                            print("{}:  R:{} ({}) ; E:{} ({})".format(j_th-1, p2rel[id2p[int(m)]], id2p[int(m)], q2ent[id2q[int(n)]], id2q[int(n)]))
                        print("-------------")
                    except:
                        print("ascii ERROR")
                        continue
            #print("===============================")
            print("===============================")
            ##################################
            ###
            '''

            with torch.no_grad():
                #tmp_eval_loss = model(input_ids, segment_ids, input_mask, input_ent, ent_mask, label_ids, k_1.half(), v_1.half())
                #logits = model(input_ids, segment_ids, input_mask, input_ent, ent_mask, None, k_1.half(), v_1.half())
                output_gen_ids = model(input_ids, segment_ids, input_mask,
                                       input_ent, ent_mask, None, k_1.half(),
                                       v_1.half())
                #print(output_gen_ids)
                #exit()

                #accuracy
                #Two entity in

                output_ans = output_ans_map[int(output_ans_id)]
                if output_gen_ids == None:
                    print("None")
                    continue
                for i, ids_list_pre in enumerate(output_gen_ids):

                    ids_list_ans = output_ans[i]

                    if len(ids_list_pre) != len(ids_list_ans):
                        print("========")
                        print(ids_list_pre)
                        print(ids_list_ans)
                        print("========")
                        continue

                    #print("{}/{}".format(counter,329))
                    counter += 1
                    acc = 0
                    pre = 0
                    f1 = 0

                    for j, ids in enumerate(ids_list_pre):
                        try:
                            if ids_list_ans[j] == ids:
                                acc += float(1 / len(ids_list_ans))
                                if ids_list_ans[j] == 1:
                                    pre += float(1 / ids_list_ans.count(1))
                                else:
                                    pre += 0.0
                                f1 = float(2.0 * pre * acc / (acc + pre))
                        except:
                            print("!!!")
                            print(ids_list_ans, j, "wrong")
                            print("!!!")
                            exit()

                    acc_all += acc
                    pre_all += pre
                    f1_all += f1

        print("==============================")
        P = acc_all / counter
        R = pre_all / counter
        F1 = float(2.0 * P * R / (P + R))
        print("P:", P)
        print("R:", R)
        print("F1:", F1)
        print("==============================")
        with open(output_file_pred, "w") as writer:
            logger.info("***** Results*****")
            fpred.write("P: {}\n".format(P))
            fpred.write("R: {}\n".format(R))
            fpred.write("F1: {}\n".format(F1))
            '''
            #if all 1 or all 0 don't choose!
            if_use = True
            try:
                for idxx, ids_list in enumerate(output_gen_ids):
                    j_0 = ids_list.count(0)
                    j_1 = ids_list.count(1)
                    if j_0==0 or j_0==len(ids_list) or j_1==0 or j_1==len(ids_list):
                        if_use = False
            except:
                continue

            if if_use:
                data={"label":output_label, "text":output_text, "ents":output_ent, "ans":output_gen_ids}
                save_data_list.append(data)
                counter+=1
                print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
                print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
                print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
                print(counter)
                print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
                print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
                print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
            else:
                continue

            if counter==100:
                with open('exp1/fewrel_100.json', 'w', encoding='utf-8') as f:
                    json.dump(save_data_list, f, ensure_ascii=False)
                    print("Done")
                    exit()
            '''

            ######
            ######
            '''
            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy, pred = accuracy(logits, label_ids)
            for a, b in zip(pred, label_ids):
                fgold.write("{}\n".format(b))
                fpred.write("{}\n".format(a))

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1
            '''
        '''
Beispiel #6
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--ernie_model",
                        default=None,
                        type=str,
                        required=True,
                        help="Ernie pre-trained model")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        default=False,
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        default=False,
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--threshold', type=float, default=.3)
    ##########ADD##
    parser.add_argument("--K_V_dim",
                        type=int,
                        default=100,
                        help="Key and Value dim == KG representation dim")

    parser.add_argument(
        "--Q_dim",
        type=int,
        default=768,
        help="Query dim == Bert six output layer representation dim")
    parser.add_argument(
        '--graphsage',
        default=False,
        action='store_true',
        help="Whether to use Attention GraphSage instead of GAT")
    parser.add_argument('--self_att',
                        default=True,
                        action='store_true',
                        help="Whether to use GAT")
    parser.add_argument('--data_token',
                        type=str,
                        default='None',
                        help="Using token ids")
    ###############

    args = parser.parse_args()

    processors = TacredProcessor

    num_labels_task = 42

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    processor = processors()
    num_labels = num_labels_task
    label_list = None

    #tokenizer = BertTokenizer.from_pretrained(args.ernie_model, do_lower_case=args.do_lower_case)
    tokenizer = RobertaTokenizer.from_pretrained(args.ernie_model)

    train_examples = None
    num_train_steps = None
    train_examples, label_list = processor.get_train_examples(args.data_dir)
    label_list = sorted(label_list)
    '''
    vecs = []
    vecs.append([0]*100)
    with open("kg_embed/entity2vec.vec", 'r') as fin:
        for line in fin:
            vec = line.strip().split('\t')
            vec = [float(x) for x in vec]
            vecs.append(vec)
    embed = torch.FloatTensor(vecs)
    embed = torch.nn.Embedding.from_pretrained(embed)

    logger.info("Shape of entity embedding: "+str(embed.weight.size()))
    del vecs
    '''

    filenames = os.listdir(args.output_dir)
    filenames = [x for x in filenames if "pytorch_model.bin_" in x]

    file_mark = []
    for x in filenames:
        file_mark.append([x, True])
        file_mark.append([x, False])

    eval_examples = processor.get_dev_examples(args.data_dir)
    dev = convert_examples_to_features(eval_examples, label_list,
                                       args.max_seq_length, tokenizer,
                                       args.threshold)
    eval_examples = processor.get_test_examples(args.data_dir)
    test = convert_examples_to_features(eval_examples, label_list,
                                        args.max_seq_length, tokenizer,
                                        args.threshold)

    for x, mark in file_mark:
        print(x, mark)
        output_model_file = os.path.join(args.output_dir, x)
        model_state_dict = torch.load(output_model_file)
        model, _ = BertForSequenceClassification.from_pretrained(
            args.ernie_model,
            state_dict=model_state_dict,
            num_labels=len(label_list),
            args=args)

        if args.fp16:
            model.half()
        model.to(device)

        if mark:
            eval_features = dev
            output_file = os.path.join(
                args.output_dir, "eval_pred_{}.txt".format(x.split("_")[-1]))
            output_file_ = os.path.join(
                args.output_dir, "eval_gold_{}.txt".format(x.split("_")[-1]))
        else:
            eval_features = test
            output_file = os.path.join(
                args.output_dir, "test_pred_{}.txt".format(x.split("_")[-1]))
            output_file_ = os.path.join(
                args.output_dir, "test_gold_{}.txt".format(x.split("_")[-1]))
        fpred = open(output_file, "w")
        fgold = open(output_file_, "w")

        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        # zeros = [0 for _ in range(args.max_seq_length)]
        # zeros_ent = [0 for _ in range(100)]
        # zeros_ent = [zeros_ent for _ in range(args.max_seq_length)]
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        all_ent = torch.tensor([f.input_ent for f in eval_features],
                               dtype=torch.long)
        all_ent_masks = torch.tensor([f.ent_mask for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_ent, all_ent_masks,
                                  all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0

        for input_ids, input_mask, segment_ids, input_ent, ent_mask, label_ids in eval_dataloader:

            input_ent = input_ent + 1

            #input_ent = embed(input_ent+1) # -1 -> 0
            input_ent = input_ent.to(device)  # -1 -> 0
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            ent_mask = ent_mask.to(device)
            label_ids = label_ids.to(device)

            #k,v = load_k_v_queryR_small(input_ent)
            k_1, v_1, k_2, v_2 = load_k_v_queryR_small(input_ent)

            ####test
            if int(input_ent[input_ent != 0].shape[0]) == 0:  ###open or not?
                print("None ent")
                #print(input_ent)
                print(input_ent.shape)
                #print("------------")
                #k,v = load_k_v_queryR_small(input_ent)
                #print(k)
                #print(k.shape)
                #print("------------")
                #print(v)
                #print(v.shape)
                #continue
                k_1 = torch.zeros(input_ent.shape[0], 1, 1, 100).cuda().half()
                v_1 = torch.zeros(input_ent.shape[0], 1, 1, 100).cuda().half()
                k_2 = torch.zeros(input_ent.shape[0], 1, 1, 1,
                                  100).cuda().half()
                v_2 = torch.zeros(input_ent.shape[0], 1, 1, 1,
                                  100).cuda().half()
            '''
            else:
                #print(k_2)
                print(k_1.shape)
                print(k_2.shape)
                exit()
            '''

            with torch.no_grad():
                #tmp_eval_loss = model(input_ids, segment_ids, input_mask, input_ent, ent_mask, label_ids, k.half(), v.half())
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      input_ent, ent_mask, label_ids,
                                      k_1.half(), v_1.half(), k_2.half(),
                                      v_2.half())
                #logits = model(input_ids, segment_ids, input_mask, input_ent, ent_mask, None, k.half(), v.half())
                logits = model(input_ids, segment_ids, input_mask, input_ent,
                               ent_mask, None, k_1.half(), v_1.half(),
                               k_2.half(), v_2.half())

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy, pred = accuracy(logits, label_ids)
            for a, b in zip(pred, label_ids):
                fgold.write("{}\n".format(label_list[b]))
                fpred.write("{}\n".format(label_list[a]))

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples

        result = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy}
        if mark:
            output_eval_file = os.path.join(
                args.output_dir,
                "eval_results_{}.txt".format(x.split("_")[-1]))
        else:
            output_eval_file = os.path.join(
                args.output_dir,
                "test_results_{}.txt".format(x.split("_")[-1]))

        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))