def main_all(size, nbiter, lr):
    #neurons_init = None #ALLGISTS[0:size**2].reshape((size,size,-1))
    neurons_init = ALLGISTS[0:size**2].reshape((size, size, -1))
    k = km(size, DIM, neurons_init)
    k.learn(ALLGISTS, nbiter, lr)
    logging.info('Map computing ... finish')
    save_img(k, 100000, thumb_size=64)
def main_all(size,nbiter,lr):
    #neurons_init = None #ALLGISTS[0:size**2].reshape((size,size,-1))
    neurons_init = ALLGISTS[0:size**2].reshape((size,size,-1))
    k = km(size,DIM,neurons_init)
    k.learn(ALLGISTS,nbiter,lr)
    logging.info('Map computing ... finish')
    save_img(k,100000,thumb_size=64)
Beispiel #3
0
def main(size, nbiter, lr):
    NBCHANNEL = 3
    init = np.random.random_integers(0, 255, size**2 * NBCHANNEL)
    init = init.reshape(size, size, NBCHANNEL)

    sample = np.array([[0, 0, 0], [255, 0, 0], [0, 255, 0], [0, 0, 255],
                       [255, 255, 0], [0, 255, 255]])

    k = km(size, NBCHANNEL, init)
    kohonen.save_rgb(k, 0)
    k.learn(sample, nbiter, lr, callback=kohonen.save_rgb)
    kohonen.save_rgb(k, 100000)
def main(size, nbiter, lr):
    neurons_init = ALLGISTS[0:size**2].reshape((size, size, -1))

    k = km(size, DIM, neurons_init)

    pics = [
        'forest_text111.jpg', 'mountain_n44001.jpg', 'coast_bea1.jpg',
        'street_art1041.jpg', 'highway_bost161.jpg', 'opencountry_land381.jpg',
        'insidecity_bost141.jpg', 'tallbuilding_a632011.jpg'
    ]

    sample = np.array([GISTS[os.path.join(PICS_DIR, p)] for p in pics])
    k.learn(sample, nbiter, lr)  #,callback=save_img)
def main(size,nbiter,lr):
    NBCHANNEL = 3 
    init = np.random.random_integers(0,255,size**2*NBCHANNEL)
    init = init.reshape(size,size,NBCHANNEL)

    sample = np.array([[0,0,0],
                       [255,0,0],
                       [0,255,0],
                       [0,0,255],
                       [255,255,0],
                       [0,255,255]])

    k = km(size,NBCHANNEL,init)
    kohonen.save_rgb(k,0)
    k.learn(sample,nbiter,lr,callback=kohonen.save_rgb)
    kohonen.save_rgb(k,100000)
def main(size,nbiter,lr):
    neurons_init = ALLGISTS[0:size**2].reshape((size,size,-1))    

    k = km(size,DIM,neurons_init)

    pics = ['forest_text111.jpg',
            'mountain_n44001.jpg',
            'coast_bea1.jpg',
            'street_art1041.jpg',
            'highway_bost161.jpg',
            'opencountry_land381.jpg',
            'insidecity_bost141.jpg',
            'tallbuilding_a632011.jpg']

    sample = np.array([ GISTS[os.path.join(PICS_DIR,p)] for p in pics ])
    k.learn(sample,nbiter,lr)#,callback=save_img)