def apply_equalize(input: torch.Tensor, params: Dict[str, torch.Tensor]) -> torch.Tensor: r"""Equalize an image. Args: input (torch.Tensor): Tensor to be transformed with shape :math:`(*, C, H, W)`. Returns: torch.Tensor: Adjusted image with shape :math:`(B, C, H, W)`. """ return equalize(input)
def apply_equalize(input: torch.Tensor, params: Dict[str, torch.Tensor]) -> torch.Tensor: r"""Equalize an image. Args: input (torch.Tensor): Tensor to be transformed with shape (H, W), (C, H, W), (B, C, H, W). Returns: torch.Tensor: Adjusted image. """ input = _transform_input(input) _validate_input_dtype( input, accepted_dtypes=[torch.float16, torch.float32, torch.float64]) return equalize(input)
def apply_equalize(input: torch.Tensor, params: Dict[str, torch.Tensor]) -> torch.Tensor: r"""Equalize an image. Args: input (torch.Tensor): Tensor to be transformed with shape (H, W), (C, H, W), (B, C, H, W). params (Dict[str, torch.Tensor]): - params['p']: Probability. Returns: torch.Tensor: Adjusted image. """ input = _transform_input(input) _validate_input_dtype(input, accepted_dtypes=[torch.float16, torch.float32, torch.float64]) res = [] for image, prob in zip(input, params['batch_prob']): res.append(equalize(image) if prob else image) return torch.cat(res, dim=0)
def add_equal(img, x): img_norm = img / torch.max(img) img_eq = equalize(img_norm) return torch.lerp(img_norm, img_eq, x)
def apply_transform(self, input: Tensor, params: Dict[str, Tensor], transform: Optional[Tensor] = None) -> Tensor: return equalize(input)