Beispiel #1
0
    def forward(self, laf: torch.Tensor,
                img: torch.Tensor) -> torch.Tensor:  # type: ignore
        """
        Args:
            laf: (torch.Tensor) shape [BxNx2x3]
            img: (torch.Tensor) shape [Bx1xHxW]

        Returns:
            laf_out: (torch.Tensor) shape [BxNx2x3]"""
        raise_error_if_laf_is_not_valid(laf)
        img_message: str = "Invalid img shape, we expect BxCxHxW. Got: {}".format(
            img.shape)
        if not torch.is_tensor(img):
            raise TypeError("img type is not a torch.Tensor. Got {}".format(
                type(img)))
        if len(img.shape) != 4:
            raise ValueError(img_message)
        if laf.size(0) != img.size(0):
            raise ValueError(
                "Batch size of laf and img should be the same. Got {}, {}".
                format(img.size(0), laf.size(0)))
        B, N = laf.shape[:2]
        PS: int = self.patch_size
        patches: torch.Tensor = extract_patches_from_pyramid(
            img, make_upright(laf), PS, True).view(-1, 1, PS, PS)
        ellipse_shape: torch.Tensor = self.affine_shape_detector(patches)
        ellipses = torch.cat(
            [laf.view(-1, 2, 3)[..., 2].unsqueeze(1), ellipse_shape],
            dim=2).view(B, N, 5)
        scale_orig = get_laf_scale(laf)
        laf_out = ellipse_to_laf(ellipses)
        ellipse_scale = get_laf_scale(laf_out)
        laf_out = scale_laf(laf_out, scale_orig / ellipse_scale)
        return laf_out
Beispiel #2
0
    def forward(self, laf: torch.Tensor, img: torch.Tensor) -> torch.Tensor:
        """
        Args:
            laf: shape [BxNx2x3]
            img: shape [Bx1xHxW]

        Returns:
            laf_out shape [BxNx2x3]
        """
        raise_error_if_laf_is_not_valid(laf)
        img_message: str = "Invalid img shape, we expect BxCxHxW. Got: {}".format(img.shape)
        if not torch.is_tensor(img):
            raise TypeError("img type is not a torch.Tensor. Got {}".format(type(img)))
        if len(img.shape) != 4:
            raise ValueError(img_message)
        if laf.size(0) != img.size(0):
            raise ValueError(
                "Batch size of laf and img should be the same. Got {}, {}".format(img.size(0), laf.size(0))
            )
        B, N = laf.shape[:2]
        PS: int = self.patch_size
        patches: torch.Tensor = extract_patches_from_pyramid(img, make_upright(laf), PS, True).view(-1, 1, PS, PS)
        xy = self.features(self._normalize_input(patches)).view(-1, 3)
        a1 = torch.cat([1.0 + xy[:, 0].reshape(-1, 1, 1), 0 * xy[:, 0].reshape(-1, 1, 1)], dim=2)
        a2 = torch.cat([xy[:, 1].reshape(-1, 1, 1), 1.0 + xy[:, 2].reshape(-1, 1, 1)], dim=2)
        new_laf_no_center = torch.cat([a1, a2], dim=1).reshape(B, N, 2, 2)
        new_laf = torch.cat([new_laf_no_center, laf[:, :, :, 2:3]], dim=3)
        scale_orig = get_laf_scale(laf)
        ellipse_scale = get_laf_scale(new_laf)
        laf_out = scale_laf(make_upright(new_laf), scale_orig / ellipse_scale)
        return laf_out
def extract_patches_from_pyramid(
    img: torch.Tensor, laf: torch.Tensor, PS: int = 32,
    normalize_lafs_before_extraction: bool = True
) -> torch.Tensor:
    """Extract patches defined by LAFs from image tensor.
    Copied from kornia.feature.laf.extract_patches_from_pyramid with one minor
    difference - highlighted below.
    """
    raise_error_if_laf_is_not_valid(laf)
    if normalize_lafs_before_extraction:
        nlaf: torch.Tensor = normalize_laf(laf, img)
    else:
        nlaf = laf
    B, N, _, _ = laf.size()
    _, ch, h, w = img.size()
    scale = 2.0 * get_laf_scale(denormalize_laf(nlaf, img)) / float(PS)
    pyr_idx = scale.log2().relu().long()  # diff: floor instead of round
    cur_img = img
    cur_pyr_level = 0
    out = torch.zeros(B, N, ch, PS, PS).to(nlaf.dtype).to(nlaf.device)
    while min(cur_img.size(2), cur_img.size(3)) >= PS:
        _, ch, h, w = cur_img.size()
        # for loop temporarily, to be refactored
        for i in range(B):
            scale_mask = (pyr_idx[i] == cur_pyr_level).squeeze()
            if (scale_mask.float().sum()) == 0:
                continue
            scale_mask = (scale_mask > 0).view(-1)
            grid = generate_patch_grid_from_normalized_LAF(
                    cur_img[i: i + 1], nlaf[i: i + 1, scale_mask, :, :], PS)
            patches = F.grid_sample(
                cur_img[i: i + 1].expand(grid.size(0), ch, h, w),
                grid,  # type: ignore
                padding_mode="border",
                align_corners=False,
            )
            out[i].masked_scatter_(scale_mask.view(-1, 1, 1, 1), patches)
        cur_img = pyrdown(cur_img)
        cur_pyr_level += 1
    return out