Beispiel #1
0
    def test_gradcheck(self, device, dtype):
        def apply_boxes_method(tensor: torch.Tensor, method: str, **kwargs):
            boxes = Boxes(tensor)
            result = getattr(boxes, method)(**kwargs)
            return result.data if isinstance(result, Boxes) else result

        t_boxes1 = torch.tensor([[[1.0, 1.0], [3.0, 1.0], [3.0, 2.0], [1.0, 2.0]]], device=device, dtype=dtype)

        t_boxes1 = utils.tensor_to_gradcheck_var(t_boxes1)
        t_boxes2 = utils.tensor_to_gradcheck_var(t_boxes1.detach().clone())
        t_boxes3 = utils.tensor_to_gradcheck_var(t_boxes1.detach().clone())
        t_boxes4 = utils.tensor_to_gradcheck_var(t_boxes1.detach().clone())
        t_boxes_xyxy = utils.tensor_to_gradcheck_var(torch.tensor([[1.0, 3.0, 5.0, 6.0]]))
        t_boxes_xyxy1 = utils.tensor_to_gradcheck_var(t_boxes_xyxy.detach().clone())

        assert gradcheck(partial(apply_boxes_method, method='to_tensor'), (t_boxes2,), raise_exception=True)
        assert gradcheck(
            partial(apply_boxes_method, method='to_tensor', mode='xyxy_plus'), (t_boxes3,), raise_exception=True
        )
        assert gradcheck(
            partial(apply_boxes_method, method='to_tensor', mode='vertices_plus'), (t_boxes4,), raise_exception=True
        )
        assert gradcheck(partial(apply_boxes_method, method='get_boxes_shape'), (t_boxes1,), raise_exception=True)
        assert gradcheck(
            lambda x: Boxes.from_tensor(x, mode='xyxy_plus').data, (t_boxes_xyxy,), raise_exception=True
        )
        assert gradcheck(
            lambda x: Boxes.from_tensor(x, mode='xywh').data, (t_boxes_xyxy1,), raise_exception=True
        )
Beispiel #2
0
    def test_smoke(self, device, dtype):
        def _create_tensor_box():
            # Sample two points of the rectangle
            points = torch.rand(1, 4, device=device, dtype=dtype)

            # Fill according missing points
            tensor_boxes = torch.zeros(1, 4, 2, device=device, dtype=dtype)
            tensor_boxes[0, 0] = points[0][:2]
            tensor_boxes[0, 1, 0] = points[0][2]
            tensor_boxes[0, 1, 1] = points[0][1]
            tensor_boxes[0, 2] = points[0][2:]
            tensor_boxes[0, 3, 0] = points[0][0]
            tensor_boxes[0, 3, 1] = points[0][3]
            return tensor_boxes

        # Validate
        assert Boxes(_create_tensor_box())  # Validate 1 box

        # 2 boxes without batching (N, 4, 2) where N=2
        two_boxes = torch.cat([_create_tensor_box(), _create_tensor_box()])
        assert Boxes(two_boxes)

        # 2 boxes in batch (B, 1, 4, 2) where B=2
        batched_bbox = torch.stack([_create_tensor_box(), _create_tensor_box()])
        assert Boxes(batched_bbox)
Beispiel #3
0
    def test_get_boxes_shape(self, device, dtype):
        box = Boxes(torch.tensor([[[1.0, 1.0], [3.0, 2.0], [1.0, 2.0], [3.0, 1.0]]], device=device, dtype=dtype))
        t_boxes = torch.tensor(
            [[[1.0, 1.0], [3.0, 1.0], [1.0, 2.0], [3.0, 2.0]], [[5.0, 4.0], [2.0, 2.0], [5.0, 2.0], [2.0, 4.0]]],
            device=device,
            dtype=dtype,
        )  # (2, 4, 2)
        boxes = Boxes(t_boxes)
        boxes_batch = Boxes(t_boxes[None])  # (1, 2, 4, 2)

        # Single box
        h, w = box.get_boxes_shape()
        assert (h.item(), w.item()) == (2, 3)

        # Boxes
        h, w = boxes.get_boxes_shape()
        assert h.ndim == 1 and w.ndim == 1
        assert len(h) == 2 and len(w) == 2
        assert (h == torch.as_tensor([2.0, 3.0], device=device)).all() and (
            w == torch.as_tensor([3.0, 4.0], device=device)
        ).all()

        # Box batch
        h, w = boxes_batch.get_boxes_shape()
        assert h.ndim == 2 and w.ndim == 2
        assert h.shape == (1, 2) and w.shape == (1, 2)
        assert (h == torch.as_tensor([[2.0, 3.0]], device=device)).all() and (
            w == torch.as_tensor([[3.0, 4.0]], device=device)
        ).all()
Beispiel #4
0
    def test_get_boxes_shape_batch(self, device, dtype):
        t_box1 = torch.tensor([[[1.0, 1.0], [3.0, 2.0], [3.0, 1.0], [1.0, 2.0]]], device=device, dtype=dtype)
        t_box2 = torch.tensor([[[5.0, 2.0], [2.0, 2.0], [5.0, 4.0], [2.0, 4.0]]], device=device, dtype=dtype)
        batched_boxes = Boxes(torch.stack([t_box1, t_box2]))

        h, w = batched_boxes.get_boxes_shape()
        assert h.ndim == 2 and w.ndim == 2
        assert h.shape == (2, 1) and w.shape == (2, 1)
        assert (h == torch.as_tensor([[2], [3]], device=device)).all() and (
            w == torch.as_tensor([[3], [4]], device=device)
        ).all()
Beispiel #5
0
    def test_transform_boxes_(self, device, dtype):
        # Define boxes in XYXY format for simplicity.
        boxes_xyxy = torch.tensor([[139.2640, 103.0150, 398.3120, 411.5225]], device=device, dtype=dtype)
        expected_boxes_xyxy = torch.tensor([[372.7360, 103.0150, 115.6880, 411.5225]], device=device, dtype=dtype)

        boxes = Boxes.from_tensor(boxes_xyxy)
        expected_boxes = Boxes.from_tensor(expected_boxes_xyxy, validate_boxes=False)

        trans_mat = torch.tensor([[[-1.0, 0.0, 512.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype)

        transformed_boxes = boxes.transform_boxes_(trans_mat)
        assert_allclose(transformed_boxes.data, expected_boxes.data, atol=1e-4, rtol=1e-4)
        # inplace check
        assert transformed_boxes is boxes
Beispiel #6
0
    def test_from_invalid_tensor(self, shape: Tuple[int], device, dtype):
        box_xyxy = torch.as_tensor([[1, 2, -3, 4]], device=device, dtype=dtype).view(*shape)  # Invalid width
        box_xyxy_plus = torch.as_tensor([[1, 2, 0, 3]], device=device, dtype=dtype).view(*shape)  # Invalid height

        try:
            Boxes.from_tensor(box_xyxy, mode='xyxy')
            assert False, "Boxes.from_tensor should have raised any exception"
        except ValueError:
            pass

        try:
            Boxes.from_tensor(box_xyxy_plus, mode='xyxy_plus')
            assert False, "Boxes.from_tensor should have raised any exception"
        except ValueError:
            pass
Beispiel #7
0
    def test_transform_multiple_boxes(self, device, dtype):
        # Define boxes in XYXY format for simplicity.
        boxes_xyxy = torch.tensor(
            [
                [139.2640, 103.0150, 398.3120, 411.5225],
                [1.0240, 80.5547, 513.0000, 513.0000],
                [165.2053, 262.1440, 511.6347, 509.9280],
                [119.8080, 144.2067, 258.0240, 411.1292],
            ],
            device=device,
            dtype=dtype,
        ).repeat(
            2, 1, 1
        )  # 2 x 4 x 4 two images 4 boxes each

        expected_boxes_xyxy = torch.tensor(
            [
                [
                    [372.7360, 103.0150, 115.6880, 411.5225],
                    [510.9760, 80.5547, 1.0000, 513.0000],
                    [346.7947, 262.1440, 2.3653, 509.9280],
                    [392.1920, 144.2067, 255.9760, 411.1292],
                ],
                [
                    [139.2640, 103.0150, 398.3120, 411.5225],
                    [1.0240, 80.5547, 513.0000, 513.0000],
                    [165.2053, 262.1440, 511.6347, 509.9280],
                    [119.8080, 144.2067, 258.0240, 411.1292],
                ],
            ],
            device=device,
            dtype=dtype,
        )

        trans_mat = torch.tensor(
            [
                [[-1.0, 0.0, 512.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]],
                [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]],
            ],
            device=device,
            dtype=dtype,
        )

        boxes = Boxes.from_tensor(boxes_xyxy)
        expected_boxes = Boxes.from_tensor(expected_boxes_xyxy, validate_boxes=False)

        out = boxes.transform_boxes(trans_mat)
        assert_allclose(out.data, expected_boxes.data, atol=1e-4, rtol=1e-4)
Beispiel #8
0
    def test_gradcheck(self, device, dtype):
        # Define boxes in XYXY format for simplicity.
        boxes_xyxy = torch.tensor(
            [
                [139.2640, 103.0150, 258.0480, 307.5075],
                [1.0240, 80.5547, 510.9760, 431.4453],
                [165.2053, 262.1440, 345.4293, 546.7840],
                [119.8080, 144.2067, 137.2160, 265.9225],
            ],
            device=device,
            dtype=dtype,
        )
        boxes = Boxes.from_tensor(boxes_xyxy)

        trans_mat = torch.tensor([[[-1.0, 0.0, 512.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype)

        trans_mat = utils.tensor_to_gradcheck_var(trans_mat)
        t_boxes = utils.tensor_to_gradcheck_var(boxes.data)

        def _wrapper_transform_boxes(quadrilaterals, M):
            boxes = Boxes(quadrilaterals)
            boxes = boxes.transform_boxes(M)
            return boxes.data

        assert gradcheck(_wrapper_transform_boxes, (t_boxes, trans_mat), raise_exception=True)
Beispiel #9
0
    def test_to(self, device, dtype):
        boxes = Boxes.from_tensor(torch.as_tensor([[1, 2, 3, 4]], device='cpu', dtype=torch.float32))
        assert boxes.to(device=device).data.device == device
        assert boxes.to(dtype=dtype).data.dtype == dtype

        boxes_moved = boxes.to(device, dtype)
        assert boxes_moved is boxes  # to is an inplace op.
        assert boxes_moved.data.device == device, boxes_moved.data.dtype == dtype
Beispiel #10
0
    def test_boxes_to_tensor(self, shape: Tuple[int], device, dtype):
        # quadrilateral with randomized vertices to reflect possible transforms.
        box = Boxes(torch.as_tensor([[[2, 2], [2, 3], [1, 3], [1, 2]]], device=device, dtype=dtype).view(*shape, 2))

        expected_box_xyxy = torch.as_tensor([[1, 2, 3, 4]], device=device, dtype=dtype).view(*shape)
        expected_box_xyxy_plus = torch.as_tensor([[1, 2, 2, 3]], device=device, dtype=dtype).view(*shape)
        expected_box_xywh = torch.as_tensor([[1, 2, 2, 2]], device=device, dtype=dtype).view(*shape)
        expected_vertices = torch.as_tensor([[[1, 2], [3, 2], [3, 4], [1, 4]]], device=device, dtype=dtype).view(
            *shape, 2
        )
        expected_vertices_plus = torch.as_tensor([[[1, 2], [2, 2], [2, 3], [1, 3]]], device=device, dtype=dtype).view(
            *shape, 2
        )

        boxes_xyxy = box.to_tensor(mode='xyxy')
        boxes_xyxy_plus = box.to_tensor(mode='xyxy_plus')
        boxes_xywh = box.to_tensor(mode='xywh')
        boxes_vertices = box.to_tensor(mode='vertices')
        boxes_vertices_plus = box.to_tensor(mode='vertices_plus')

        assert boxes_xyxy.shape == expected_box_xyxy.shape  # type: ignore
        assert_allclose(boxes_xyxy, expected_box_xyxy)

        assert boxes_xyxy_plus.shape == expected_box_xyxy_plus.shape  # type: ignore
        assert_allclose(boxes_xyxy_plus, expected_box_xyxy_plus)

        assert boxes_xywh.shape == expected_box_xywh.shape  # type: ignore
        assert_allclose(boxes_xywh, expected_box_xywh)

        assert boxes_vertices.shape == expected_vertices.shape  # type: ignore
        assert_allclose(boxes_vertices, expected_vertices)

        assert boxes_vertices_plus.shape == expected_vertices_plus.shape  # type: ignore
        assert_allclose(boxes_vertices_plus, expected_vertices_plus)
Beispiel #11
0
    def test_from_tensor(self, shape: Tuple[int], device, dtype):
        box_xyxy = torch.as_tensor([[1, 2, 3, 4]], device=device, dtype=dtype).view(*shape)
        box_xyxy_plus = torch.as_tensor([[1, 2, 2, 3]], device=device, dtype=dtype).view(*shape)
        box_xywh = torch.as_tensor([[1, 2, 2, 2]], device=device, dtype=dtype).view(*shape)

        expected_box = torch.as_tensor([[[1, 2], [2, 2], [2, 3], [1, 3]]], device=device, dtype=dtype).view(*shape, 2)

        boxes_xyxy = Boxes.from_tensor(box_xyxy, mode='xyxy').data
        boxes_xyxy_plus = Boxes.from_tensor(box_xyxy_plus, mode='xyxy_plus').data
        boxes_xywh = Boxes.from_tensor(box_xywh, mode='xywh').data

        assert boxes_xyxy.shape == expected_box.shape
        assert_allclose(boxes_xyxy, expected_box)

        assert boxes_xyxy_plus.shape == expected_box.shape
        assert_allclose(boxes_xyxy_plus, expected_box)

        assert boxes_xywh.shape == expected_box.shape
        assert_allclose(boxes_xywh, expected_box)
Beispiel #12
0
 def test_boxes_list_to_tensor_list(self, mode, device, dtype):
     src_1 = [
         torch.as_tensor([[[2, 2], [2, 3], [1, 3], [1, 2]]], device=device, dtype=dtype),
         torch.as_tensor([
             [[2, 2], [2, 3], [1, 3], [1, 2]], [[2, 2], [2, 3], [1, 3], [1, 2]]
         ], device=device, dtype=dtype)
     ]
     src_2 = [
         torch.as_tensor([[1, 1, 5, 5]], device=device, dtype=dtype),
         torch.as_tensor([[1, 1, 5, 5], [1, 1, 5, 5]], device=device, dtype=dtype)
     ]
     src = src_1 if mode in ['vertices', 'vertices_plus'] else src_2
     box = Boxes.from_tensor(src, mode=mode)
     out = box.to_tensor(mode)
     assert out[0].shape == src[0].shape
     assert out[1].shape == src[1].shape
Beispiel #13
0
 def _arguments_preproc(self, *args: Tensor, data_keys: List[DataKey]):
     inp: List[Any] = []
     for arg, dcate in zip(args, data_keys):
         if DataKey.get(dcate) in [
                 DataKey.INPUT, DataKey.MASK, DataKey.KEYPOINTS
         ]:
             inp.append(arg)
         elif DataKey.get(dcate) in [
                 DataKey.BBOX, DataKey.BBOX_XYXY, DataKey.BBOX_XYWH
         ]:
             if DataKey.get(dcate) in [DataKey.BBOX]:
                 mode = "vertices_plus"
             elif DataKey.get(dcate) in [DataKey.BBOX_XYXY]:
                 mode = "xyxy"
             elif DataKey.get(dcate) in [DataKey.BBOX_XYWH]:
                 mode = "xywh"
             else:
                 raise ValueError(
                     f"Unsupported mode `{DataKey.get(dcate).name}`.")
             inp.append(Boxes.from_tensor(arg, mode=mode))  # type: ignore
         else:
             raise NotImplementedError(
                 f"input type of {dcate} is not implemented.")
     return inp
Beispiel #14
0
 def _wrapper_transform_boxes(quadrilaterals, M):
     boxes = Boxes(quadrilaterals)
     boxes = boxes.transform_boxes(M)
     return boxes.data
Beispiel #15
0
 def apply_boxes_method(tensor: torch.Tensor, method: str, **kwargs):
     boxes = Boxes(tensor)
     result = getattr(boxes, method)(**kwargs)
     return result.data if isinstance(result, Boxes) else result
Beispiel #16
0
    def test_boxes_to_mask(self, device, dtype):
        t_box1 = torch.tensor(
            [[[1.0, 1.0], [3.0, 1.0], [3.0, 2.0], [1.0, 2.0]]], device=device, dtype=dtype
        )  # (1, 4, 2)
        t_box2 = torch.tensor(
            [[[2.0, 2.0], [4.0, 2.0], [4.0, 5.0], [2.0, 4.0]]], device=device, dtype=dtype
        )  # (1, 4, 2)
        box1, box2 = Boxes(t_box1), Boxes(t_box2)
        two_boxes = Boxes(torch.cat([t_box1, t_box2]))  # (2, 4, 2)
        batched_boxes = Boxes(torch.stack([t_box1, t_box2]))  # (2, 1, 4, 2)

        height, width = 7, 5

        expected_mask1 = torch.tensor(
            [
                [
                    [0, 0, 0, 0, 0],
                    [0, 1, 1, 1, 0],
                    [0, 1, 1, 1, 0],
                    [0, 0, 0, 0, 0],
                    [0, 0, 0, 0, 0],
                    [0, 0, 0, 0, 0],
                    [0, 0, 0, 0, 0],
                ]
            ],
            device=device,
            dtype=dtype,
        )

        expected_mask2 = torch.tensor(
            [
                [
                    [0, 0, 0, 0, 0],
                    [0, 0, 0, 0, 0],
                    [0, 0, 1, 1, 1],
                    [0, 0, 1, 1, 1],
                    [0, 0, 1, 1, 1],
                    [0, 0, 1, 1, 1],
                    [0, 0, 0, 0, 0],
                ]
            ],
            device=device,
            dtype=dtype,
        )
        expected_two_masks = torch.cat([expected_mask1, expected_mask2])
        expected_batched_masks = torch.stack([expected_mask1, expected_mask2])

        mask1 = box1.to_mask(height, width)
        mask2 = box2.to_mask(height, width)
        two_masks = two_boxes.to_mask(height, width)
        batched_masks = batched_boxes.to_mask(height, width)

        assert mask1.shape == expected_mask1.shape
        assert_allclose(mask1, expected_mask1)

        assert mask2.shape == expected_mask2.shape
        assert_allclose(mask2, expected_mask2)

        assert two_masks.shape == expected_two_masks.shape
        assert_allclose(two_masks, expected_two_masks)

        assert batched_masks.shape == expected_batched_masks.shape
        assert_allclose(batched_masks, expected_batched_masks)