Beispiel #1
0
    def compute_projection_matrix(self,
                                  pinhole_src: PinholeCamera) -> 'DepthWarper':
        r"""Computes the projection matrix from the source to destination frame.
        """
        if not isinstance(self._pinhole_dst, PinholeCamera):
            raise TypeError("Member self._pinhole_dst expected to be of class "
                            "PinholeCamera. Got {}".format(
                                type(self._pinhole_dst)))
        if not isinstance(pinhole_src, PinholeCamera):
            raise TypeError("Argument pinhole_src expected to be of class "
                            "PinholeCamera. Got {}".format(type(pinhole_src)))
        # compute the relative pose between the non reference and the reference
        # camera frames.
        dst_trans_src: torch.Tensor = compose_transformations(
            self._pinhole_dst.extrinsics,
            inverse_transformation(pinhole_src.extrinsics),
        )

        # compute the projection matrix between the non reference cameras and
        # the reference.
        dst_proj_src: torch.Tensor = torch.matmul(self._pinhole_dst.intrinsics,
                                                  dst_trans_src)

        # update class members
        self._pinhole_src = pinhole_src
        self._dst_proj_src = dst_proj_src
        return self
Beispiel #2
0
def relative_transformation(
        trans_01: torch.Tensor,
        trans_02: torch.Tensor,
        orthogonal_rotations: bool = False) -> torch.Tensor:
    r"""Function that computes the relative homogenous transformation from a
    reference transformation :math:`T_1^{0} = \begin{bmatrix} R_1 & t_1 \\
    \mathbf{0} & 1 \end{bmatrix}` to destination :math:`T_2^{0} =
    \begin{bmatrix} R_2 & t_2 \\ \mathbf{0} & 1 \end{bmatrix}`.

    .. note:: Works with imperfect (non-orthogonal) rotation matrices as well.

    The relative transformation is computed as follows:

    .. math::

        T_1^{2} = (T_0^{1})^{-1} \cdot T_0^{2}

    Arguments:
        trans_01 (torch.Tensor): reference transformation tensor of shape
         :math:`(N, 4, 4)` or :math:`(4, 4)`.
        trans_02 (torch.Tensor): destination transformation tensor of shape
         :math:`(N, 4, 4)` or :math:`(4, 4)`.
        orthogonal_rotations (bool): If True, will invert `trans_01` assuming `trans_01[:, :3, :3]` are
            orthogonal rotation matrices (more efficient). Default: False

    Shape:
        - Output: :math:`(N, 4, 4)` or :math:`(4, 4)`.

    Returns:
        torch.Tensor: the relative transformation between the transformations.

    Example::
        >>> trans_01 = torch.eye(4)  # 4x4
        >>> trans_02 = torch.eye(4)  # 4x4
        >>> trans_12 = gradslam.geometry.geometryutils.relative_transformation(trans_01, trans_02)  # 4x4
    """
    if not torch.is_tensor(trans_01):
        raise TypeError(
            "Input trans_01 type is not a torch.Tensor. Got {}".format(
                type(trans_01)))
    if not torch.is_tensor(trans_02):
        raise TypeError(
            "Input trans_02 type is not a torch.Tensor. Got {}".format(
                type(trans_02)))
    if not trans_01.dim() in (2, 3) and trans_01.shape[-2:] == (4, 4):
        raise ValueError("Input must be a of the shape Nx4x4 or 4x4."
                         " Got {}".format(trans_01.shape))
    if not trans_02.dim() in (2, 3) and trans_02.shape[-2:] == (4, 4):
        raise ValueError("Input must be a of the shape Nx4x4 or 4x4."
                         " Got {}".format(trans_02.shape))
    if not trans_01.dim() == trans_02.dim():
        raise ValueError(
            "Input number of dims must match. Got {} and {}".format(
                trans_01.dim(), trans_02.dim()))
    trans_10: torch.Tensor = (inverse_transformation(trans_01)
                              if orthogonal_rotations else
                              torch.inverse(trans_01))
    trans_12: torch.Tensor = compose_transformations(trans_10, trans_02)
    return trans_12
Beispiel #3
0
    def _localize(
        self, pointclouds: Pointclouds, live_frame: RGBDImages, prev_frame: RGBDImages
    ):
        r"""Compute the poses for `live_frame`. If `prev_frame` is not None, computes the relative
        transformation between `live_frame` and `prev_frame` using the selected odometry provider.
        If `prev_frame` is None, use the pose from `live_frame`.

        Args:
            pointclouds (gradslam.Pointclouds): Input batch of pointcloud global maps
            live_frame (gradslam.RGBDImages): Input batch of live frames (at time step :math:`t`). Must have sequence
                length of 1.
            prev_frame (gradslam.RGBDImages or None): Input batch of previous frames (at time step :math:`t-1`).
                Must have sequence length of 1. If None, will (skip calling odometry provider and) use the pose
                from `live_frame`. Default: None

        Returns:
            poses (torch.Tensor): Poses for the live_frame batch

        Shape:
            poses: :math:`(B, 1, 4, 4)`
        """
        if not isinstance(pointclouds, Pointclouds):
            raise TypeError(
                "Expected pointclouds to be of type gradslam.Pointclouds. Got {0}.".format(
                    type(pointclouds)
                )
            )
        if not isinstance(live_frame, RGBDImages):
            raise TypeError(
                "Expected live_frame to be of type gradslam.RGBDImages. Got {0}.".format(
                    type(live_frame)
                )
            )
        if not isinstance(prev_frame, (RGBDImages, type(None))):
            raise TypeError(
                "Expected prev_frame to be of type gradslam.RGBDImages or None. Got {0}.".format(
                    type(prev_frame)
                )
            )
        if prev_frame is not None:
            if self.odom == "gt":
                warnings.warn(
                    "`prev_frame` is not used when using `odom='gt'` (should be None)"
                )
            elif not prev_frame.has_poses:
                raise ValueError("`prev_frame` should have poses, but did not.")
        if prev_frame is None and pointclouds.has_points and self.odom != "gt":
            msg = "`prev_frame` was None despite `{}` odometry method. Using `live_frame` poses.".format(
                self.odom
            )
            warnings.warn(msg)
        if prev_frame is None or self.odom == "gt":
            if not live_frame.has_poses:
                raise ValueError(
                    "`live_frame` must have poses when `prev_frame` is None or `odom='gt'`."
                )
            return live_frame.poses

        if self.odom in ["icp", "gradicp"]:
            live_frame.poses = prev_frame.poses
            frames_pc = downsample_rgbdimages(live_frame, self.dsratio)
            pc2im_bnhw = find_active_map_points(pointclouds, prev_frame)
            maps_pc = downsample_pointclouds(pointclouds, pc2im_bnhw, self.dsratio)
            transform = self.odomprov.provide(maps_pc, frames_pc)

            return compose_transformations(
                transform.squeeze(1), prev_frame.poses.squeeze(1)
            ).unsqueeze(1)