Beispiel #1
0
def apply_erase_rectangles(input: torch.Tensor, params: Dict[str, torch.Tensor]) -> torch.Tensor:
    r"""Apply rectangle erase by params.

    Generate a {0, 1} mask with drawed rectangle having parameters defined by params and size by input.size().

    Args:
        input (torch.Tensor): Tensor to be transformed with shape :math:`(*, C, H, W)`.
        params (Dict[str, torch.Tensor]):
            - params['widths']: widths tensor
            - params['heights']: heights tensor
            - params['xs']: x positions tensor
            - params['ys']: y positions tensor
            - params['values']: the value to fill in

    Returns:
        torch.Tensor: Erased image with shape :math:`(B, C, H, W)`.
    """
    if not (params['widths'].size() == params['heights'].size() == params['xs'].size() == params['ys'].size()):
        raise TypeError(
            "rectangle params components must have same shape. "
            f"Got ({params['widths'].size()}, {params['heights'].size()}) "
            f"and ({params['xs'].size()}, {params['ys'].size()})"
        )

    values = params['values'].unsqueeze(-1).unsqueeze(-1).unsqueeze(-1).repeat(1, *input.shape[1:]).to(input)

    _, c, h, w = input.size()

    bboxes = bbox_generator(params['xs'], params['ys'], params['widths'], params['heights'])
    mask = bbox_to_mask(bboxes, w, h)  # Returns B, H, W
    mask = mask.unsqueeze(1).repeat(1, c, 1, 1).to(input)  # Transform to B, c, H, W
    transformed = torch.where(mask == 1., values, input)
    return transformed
Beispiel #2
0
def random_cutmix_generator(
    batch_size: int,
    width: int,
    height: int,
    p: float = 0.5,
    num_mix: int = 1,
    beta: Optional[torch.Tensor] = None,
    cut_size: Optional[torch.Tensor] = None,
    same_on_batch: bool = False,
    device: torch.device = torch.device('cpu'),
    dtype: torch.dtype = torch.float32
) -> Dict[str, torch.Tensor]:
    r"""Generate cutmix indexes and lambdas for a batch of inputs.

    Args:
        batch_size (int): the number of images. If batchsize == 1, the output will be as same as the input.
        width (int): image width.
        height (int): image height.
        p (float): probability of applying cutmix.
        num_mix (int): number of images to mix with. Default is 1.
        beta (torch.Tensor, optional): hyperparameter for generating cut size from beta distribution.
            If None, it will be set to 1.
        cut_size (torch.Tensor, optional): controlling the minimum and maximum cut ratio from [0, 1].
            If None, it will be set to [0, 1], which means no restriction.
        same_on_batch (bool): apply the same transformation across the batch. Default: False.
        device (torch.device): the device on which the random numbers will be generated. Default: cpu.
        dtype (torch.dtype): the data type of the generated random numbers. Default: float32.

    Returns:
        params Dict[str, torch.Tensor]: parameters to be passed for transformation.
            - mix_pairs (torch.Tensor): element-wise probabilities with a shape of (num_mix, B).
            - crop_src (torch.Tensor): element-wise probabilities with a shape of (num_mix, B, 4, 2).

    Note:
        The generated random numbers are not reproducible across different devices and dtypes.

    Examples:
        >>> rng = torch.manual_seed(0)
        >>> random_cutmix_generator(3, 224, 224, p=0.5, num_mix=2)
        {'mix_pairs': tensor([[2, 0, 1],
                [1, 2, 0]]), 'crop_src': tensor([[[[ 35,  25],
                  [208,  25],
                  [208, 198],
                  [ 35, 198]],
        <BLANKLINE>
                 [[156, 137],
                  [155, 137],
                  [155, 136],
                  [156, 136]],
        <BLANKLINE>
                 [[  3,  12],
                  [210,  12],
                  [210, 219],
                  [  3, 219]]],
        <BLANKLINE>
        <BLANKLINE>
                [[[ 83, 125],
                  [177, 125],
                  [177, 219],
                  [ 83, 219]],
        <BLANKLINE>
                 [[ 54,   8],
                  [205,   8],
                  [205, 159],
                  [ 54, 159]],
        <BLANKLINE>
                 [[ 97,  70],
                  [ 96,  70],
                  [ 96,  69],
                  [ 97,  69]]]])}
    """
    _device, _dtype = _extract_device_dtype([beta, cut_size])
    beta = torch.as_tensor(1. if beta is None else beta, device=device, dtype=dtype)
    cut_size = torch.as_tensor([0., 1.] if cut_size is None else cut_size, device=device, dtype=dtype)
    assert num_mix >= 1 and isinstance(num_mix, (int,)), \
        f"`num_mix` must be an integer greater than 1. Got {num_mix}."
    assert type(height) == int and height > 0 and type(width) == int and width > 0, \
        f"'height' and 'width' must be integers. Got {height}, {width}."
    _joint_range_check(cut_size, 'cut_size', bounds=(0, 1))
    _common_param_check(batch_size, same_on_batch)

    if batch_size == 0:
        return dict(
            mix_pairs=torch.zeros([0, 3], device=_device, dtype=torch.long),
            crop_src=torch.zeros([0, 4, 2], device=_device, dtype=torch.long)
        )

    batch_probs: torch.Tensor = random_prob_generator(
        batch_size * num_mix, p, same_on_batch, device=device, dtype=dtype)
    mix_pairs: torch.Tensor = torch.rand(num_mix, batch_size, device=device, dtype=dtype).argsort(dim=1)
    cutmix_betas: torch.Tensor = _adapted_beta((batch_size * num_mix,), beta, beta, same_on_batch=same_on_batch)
    # Note: torch.clamp does not accept tensor, cutmix_betas.clamp(cut_size[0], cut_size[1]) throws:
    # Argument 1 to "clamp" of "_TensorBase" has incompatible type "Tensor"; expected "float"
    cutmix_betas = torch.min(torch.max(cutmix_betas, cut_size[0]), cut_size[1])
    cutmix_rate = torch.sqrt(1. - cutmix_betas) * batch_probs

    cut_height = (cutmix_rate * height).long()
    cut_width = (cutmix_rate * width).long()
    _gen_shape = (1,)

    if same_on_batch:
        _gen_shape = (cut_height.size(0),)
        cut_height = cut_height[0]
        cut_width = cut_width[0]

    # Reserve at least 1 pixel for cropping.
    x_start = _adapted_uniform(
        _gen_shape, torch.zeros_like(cut_width, device=device, dtype=dtype),
        (width - cut_width - 1).to(device=device, dtype=dtype), same_on_batch).to(device=device, dtype=torch.long)
    y_start = _adapted_uniform(
        _gen_shape, torch.zeros_like(cut_height, device=device, dtype=dtype),
        (height - cut_height - 1).to(device=device, dtype=dtype), same_on_batch).to(device=device, dtype=torch.long)

    crop_src = bbox_generator(x_start.squeeze(), y_start.squeeze(), cut_width, cut_height)

    # (B * num_mix, 4, 2) => (num_mix, batch_size, 4, 2)
    crop_src = crop_src.view(num_mix, batch_size, 4, 2)

    return dict(
        mix_pairs=mix_pairs.to(device=_device, dtype=torch.long),
        crop_src=crop_src.to(device=_device, dtype=torch.long)
    )
Beispiel #3
0
def random_crop_generator(
    batch_size: int,
    input_size: Tuple[int, int],
    size: Union[Tuple[int, int], torch.Tensor],
    resize_to: Optional[Tuple[int, int]] = None,
    same_on_batch: bool = False,
    device: torch.device = torch.device('cpu'),
    dtype: torch.dtype = torch.float32
) -> Dict[str, torch.Tensor]:
    r"""Get parameters for ```crop``` transformation for crop transform.

    Args:
        batch_size (int): the tensor batch size.
        input_size (tuple): Input image shape, like (h, w).
        size (tuple): Desired size of the crop operation, like (h, w).
            If tensor, it must be (B, 2).
        resize_to (tuple): Desired output size of the crop, like (h, w). If None, no resize will be performed.
        same_on_batch (bool): apply the same transformation across the batch. Default: False.
        device (torch.device): the device on which the random numbers will be generated. Default: cpu.
        dtype (torch.dtype): the data type of the generated random numbers. Default: float32.

    Returns:
        params Dict[str, torch.Tensor]: parameters to be passed for transformation.
            - src (torch.Tensor): cropping bounding boxes with a shape of (B, 4, 2).
            - dst (torch.Tensor): output bounding boxes with a shape (B, 4, 2).

    Note:
        The generated random numbers are not reproducible across different devices and dtypes.

    Example:
        >>> _ = torch.manual_seed(0)
        >>> crop_size = torch.tensor([[25, 28], [27, 29], [26, 28]])
        >>> random_crop_generator(3, (30, 30), size=crop_size, same_on_batch=False)
        {'src': tensor([[[ 1,  0],
                 [28,  0],
                 [28, 24],
                 [ 1, 24]],
        <BLANKLINE>
                [[ 1,  1],
                 [29,  1],
                 [29, 27],
                 [ 1, 27]],
        <BLANKLINE>
                [[ 0,  3],
                 [27,  3],
                 [27, 28],
                 [ 0, 28]]]), 'dst': tensor([[[ 0,  0],
                 [27,  0],
                 [27, 24],
                 [ 0, 24]],
        <BLANKLINE>
                [[ 0,  0],
                 [28,  0],
                 [28, 26],
                 [ 0, 26]],
        <BLANKLINE>
                [[ 0,  0],
                 [27,  0],
                 [27, 25],
                 [ 0, 25]]])}
    """
    _common_param_check(batch_size, same_on_batch)
    _device, _dtype = _extract_device_dtype([size if isinstance(size, torch.Tensor) else None])
    if not isinstance(size, torch.Tensor):
        size = torch.tensor(size, device=device, dtype=dtype).repeat(batch_size, 1)
    else:
        size = size.to(device=device, dtype=dtype)
    assert size.shape == torch.Size([batch_size, 2]), (
        "If `size` is a tensor, it must be shaped as (B, 2). "
        f"Got {size.shape} while expecting {torch.Size([batch_size, 2])}.")
    size = size.long()

    x_diff = input_size[1] - size[:, 1] + 1
    y_diff = input_size[0] - size[:, 0] + 1

    if (x_diff < 0).any() or (y_diff < 0).any():
        raise ValueError("input_size %s cannot be smaller than crop size %s in any dimension."
                         % (str(input_size), str(size)))

    if batch_size == 0:
        return dict(
            src=torch.zeros([0, 4, 2], device=_device, dtype=torch.long),
            dst=torch.zeros([0, 4, 2], device=_device, dtype=torch.long),
        )

    if same_on_batch:
        # If same_on_batch, select the first then repeat.
        x_start = _adapted_uniform((batch_size,), 0, x_diff[0].to(device=device, dtype=dtype), same_on_batch).long()
        y_start = _adapted_uniform((batch_size,), 0, y_diff[0].to(device=device, dtype=dtype), same_on_batch).long()
    else:
        x_start = _adapted_uniform((1,), 0, x_diff.to(device=device, dtype=dtype), same_on_batch).long()
        y_start = _adapted_uniform((1,), 0, y_diff.to(device=device, dtype=dtype), same_on_batch).long()
    crop_src = bbox_generator(
        x_start.view(-1), y_start.view(-1), size[:, 1], size[:, 0]).to(device=_device, dtype=torch.long)

    if resize_to is None:
        crop_dst = bbox_generator(
            torch.tensor([0] * batch_size, device=device, dtype=torch.long),
            torch.tensor([0] * batch_size, device=device, dtype=torch.long),
            size[:, 1], size[:, 0]).to(device=_device, dtype=torch.long)
    else:
        assert len(resize_to) == 2 and isinstance(resize_to[0], (int,)) and isinstance(resize_to[1], (int,)) \
            and resize_to[0] > 0 and resize_to[1] > 0, \
            f"`resize_to` must be a tuple of 2 positive integers. Got {resize_to}."
        crop_dst = torch.tensor([[
            [0, 0],
            [resize_to[1] - 1, 0],
            [resize_to[1] - 1, resize_to[0] - 1],
            [0, resize_to[0] - 1],
        ]], device=_device, dtype=torch.long).repeat(batch_size, 1, 1)

    return dict(src=crop_src,
                dst=crop_dst)
Beispiel #4
0
def random_crop_generator(
        batch_size: int,
        input_size: Tuple[int, int],
        size: Union[Tuple[int, int], torch.Tensor],
        resize_to: Optional[Tuple[int, int]] = None,
        same_on_batch: bool = False) -> Dict[str, torch.Tensor]:
    r"""Get parameters for ```crop``` transformation for crop transform.

    Args:
        batch_size (int): the tensor batch size.
        input_size (tuple): Input image shape, like (h, w).
        size (tuple): Desired size of the crop operation, like (h, w).
            If tensor, it must be (B, 2).
        resize_to (tuple): Desired output size of the crop, like (h, w). If None, no resize will be performed.
        same_on_batch (bool): apply the same transformation across the batch. Default: False.

    Returns:
        params Dict[str, torch.Tensor]: parameters to be passed for transformation.

    Example:
        >>> _ = torch.manual_seed(0)
        >>> crop_size = random_crop_size_generator(
        ...     3, (30, 30), scale=torch.tensor([.7, 1.3]), ratio=torch.tensor([.9, 1.]))['size']
        >>> crop_size
        tensor([[26, 29],
                [27, 28],
                [25, 28]], dtype=torch.int32)
        >>> random_crop_generator(3, (30, 30), size=crop_size, same_on_batch=False)
        {'src': tensor([[[ 1,  3],
                 [29,  3],
                 [29, 28],
                 [ 1, 28]],
        <BLANKLINE>
                [[ 2,  3],
                 [29,  3],
                 [29, 29],
                 [ 2, 29]],
        <BLANKLINE>
                [[ 0,  2],
                 [27,  2],
                 [27, 26],
                 [ 0, 26]]]), 'dst': tensor([[[ 0,  0],
                 [28,  0],
                 [28, 25],
                 [ 0, 25]],
        <BLANKLINE>
                [[ 0,  0],
                 [27,  0],
                 [27, 26],
                 [ 0, 26]],
        <BLANKLINE>
                [[ 0,  0],
                 [27,  0],
                 [27, 24],
                 [ 0, 24]]])}
    """
    _common_param_check(batch_size, same_on_batch)
    if not isinstance(size, torch.Tensor):
        size = torch.tensor(size).repeat(batch_size, 1)
    assert size.shape == torch.Size([batch_size, 2]), \
        f"If `size` is a tensor, it must be shaped as (B, 2). Got {size.shape}."
    size = size.long()

    x_diff = input_size[1] - size[:, 1] + 1
    y_diff = input_size[0] - size[:, 0] + 1

    if (x_diff < 0).any() or (y_diff < 0).any():
        raise ValueError(
            "input_size %s cannot be smaller than crop size %s in any dimension."
            % (str(input_size), str(size)))

    if same_on_batch:
        # If same_on_batch, select the first then repeat.
        x_start = _adapted_uniform((batch_size, ), 0, x_diff[0],
                                   same_on_batch).long()
        y_start = _adapted_uniform((batch_size, ), 0, y_diff[0],
                                   same_on_batch).long()
    else:
        x_start = _adapted_uniform((1, ), 0, x_diff, same_on_batch).long()
        y_start = _adapted_uniform((1, ), 0, y_diff, same_on_batch).long()

    crop_src = bbox_generator(x_start.view(-1), y_start.view(-1),
                              size[:, 1] - 1, size[:, 0] - 1)

    if resize_to is None:
        crop_dst = bbox_generator(
            torch.tensor([0] * batch_size,
                         device=x_start.device,
                         dtype=x_start.dtype),
            torch.tensor([0] * batch_size,
                         device=x_start.device,
                         dtype=x_start.dtype), size[:, 1] - 1, size[:, 0] - 1)
    else:
        crop_dst = torch.tensor([[
            [0, 0],
            [resize_to[1] - 1, 0],
            [resize_to[1] - 1, resize_to[0] - 1],
            [0, resize_to[0] - 1],
        ]],
                                device=x_start.device,
                                dtype=x_start.dtype).repeat(batch_size, 1, 1)

    return dict(src=crop_src, dst=crop_dst)
Beispiel #5
0
def random_cutmix_generator(
    batch_size: int,
    width: int,
    height: int,
    p: float = 0.5,
    num_mix: int = 1,
    beta: Optional[torch.Tensor] = None,
    cut_size: Optional[torch.Tensor] = None,
    same_on_batch: bool = False
) -> Dict[str, torch.Tensor]:
    r"""Generate cutmix indexes and lambdas for a batch of inputs.

    Args:
        batch_size (int): the number of images. If batchsize == 1, the output will be as same as the input.
        width (int): image width.
        height (int): image height.
        p (float): probability of applying cutmix.
        num_mix (int): number of images to mix with. Default is 1.
        beta (float or torch.Tensor, optional): hyperparameter for generating cut size from beta distribution.
            If None, it will be set to 1.
        cut_size ((float, float) or torch.Tensor, optional): controlling the minimum and maximum cut ratio from [0, 1].
            If None, it will be set to [0, 1], which means no restriction.
        same_on_batch (bool): apply the same transformation across the batch. Default: False.

    Returns:
        params Dict[str, torch.Tensor]: parameters to be passed for transformation.

    Examples:
        >>> rng = torch.manual_seed(0)
        >>> random_cutmix_generator(3, 224, 224, p=0.5, num_mix=2)
        {'mix_pairs': tensor([[2, 0, 1],
                [1, 2, 0]]), 'crop_src': tensor([[[[ 36,  25],
                  [209,  25],
                  [209, 198],
                  [ 36, 198]],
        <BLANKLINE>
                 [[157, 137],
                  [156, 137],
                  [156, 136],
                  [157, 136]],
        <BLANKLINE>
                 [[  3,  12],
                  [210,  12],
                  [210, 219],
                  [  3, 219]]],
        <BLANKLINE>
        <BLANKLINE>
                [[[ 83, 126],
                  [177, 126],
                  [177, 220],
                  [ 83, 220]],
        <BLANKLINE>
                 [[ 55,   8],
                  [206,   8],
                  [206, 159],
                  [ 55, 159]],
        <BLANKLINE>
                 [[ 97,  70],
                  [ 96,  70],
                  [ 96,  69],
                  [ 97,  69]]]])}

    """
    if beta is None:
        beta = torch.tensor(1.)
    if cut_size is None:
        cut_size = torch.tensor([0., 1.])
    assert num_mix >= 1 and isinstance(num_mix, (int,)), \
        f"`num_mix` must be an integer greater than 1. Got {num_mix}."
    _joint_range_check(cut_size, 'cut_size', bounds=(0, 1))

    batch_probs: torch.Tensor = random_prob_generator(batch_size * num_mix, p, same_on_batch)
    mix_pairs: torch.Tensor = torch.rand(num_mix, batch_size).argsort(dim=1)
    cutmix_betas: torch.Tensor = _adapted_beta((batch_size * num_mix,), beta, beta, same_on_batch=same_on_batch)
    # Note: torch.clamp does not accept tensor, cutmix_betas.clamp(cut_size[0], cut_size[1]) throws:
    # Argument 1 to "clamp" of "_TensorBase" has incompatible type "Tensor"; expected "float"
    cutmix_betas = torch.min(torch.max(cutmix_betas, cut_size[0]), cut_size[1])
    cutmix_rate = torch.sqrt(1. - cutmix_betas) * batch_probs

    cut_height = (cutmix_rate * height).long() - 1
    cut_width = (cutmix_rate * width).long() - 1
    _gen_shape = (1,)

    if same_on_batch:
        _gen_shape = (cut_height.size(0),)
        cut_height = cut_height[0]
        cut_width = cut_width[0]

    # Reserve at least 1 pixel for cropping.
    x_start = _adapted_uniform(
        _gen_shape, torch.zeros_like(cut_width, dtype=torch.float32), width - cut_width - 1, same_on_batch).long()
    y_start = _adapted_uniform(
        _gen_shape, torch.zeros_like(cut_height, dtype=torch.float32), height - cut_height - 1, same_on_batch).long()

    crop_src = bbox_generator(x_start.squeeze(), y_start.squeeze(), cut_width, cut_height)

    # (B * num_mix, 4, 2) => (num_mix, batch_size, 4, 2)
    crop_src = crop_src.view(num_mix, batch_size, 4, 2)

    return dict(
        mix_pairs=mix_pairs,
        crop_src=crop_src
    )