Beispiel #1
0
    def test_generator(self):
        """
        The configuration object should have some sane defaults
        """

        # If all of the required arguments are supplied, this should result in a valid job
        ts_complete_set = {
            tsk: TimeSignal.from_values(tsk, [0., 0.1], [1., 999.])
            for tsk in time_signal_names
        }

        valid_args = {
            'time_start': 0.1,
            'duration': 0.2,
            'ncpus': 1,
            'nnodes': 1,
            'timesignals': ts_complete_set
        }

        ts_complete_set_2 = {
            tsk: TimeSignal.from_values(tsk, [0., 0.1], [1., 444.])
            for tsk in time_signal_names
        }

        valid_args_2 = {
            'time_start': 0.1,
            'duration': 0.2,
            'ncpus': 1,
            'nnodes': 1,
            'timesignals': ts_complete_set_2
        }

        # check that it is a valid job
        job1 = ModelJob(**valid_args)
        job1.label = "job1"

        job2 = ModelJob(**valid_args_2)
        job2.label = "job2"

        job3 = ModelJob(**valid_args)
        job3.label = "job3"

        job4 = ModelJob(**valid_args_2)
        job4.label = "job4"

        job5 = ModelJob(**valid_args)
        job5.label = "job5"

        input_jobs = [job1, job2, job3, job4, job5]

        # diversify the time start..
        for jj, job in enumerate(input_jobs):
            job.time_start += jj * 0.1

        for job in input_jobs:
            self.assertTrue(job.is_valid())

        config_generator = {
            "type": "cluster_and_spawn",
            "job_clustering": {
                "type": "Kmeans",
                "rseed": 0,
                "apply_to": ["test_wl_0"],
                "ok_if_low_rank": True,
                "max_iter": 100,
                "max_num_clusters": 3,
                "delta_num_clusters": 1,
                "num_timesignal_bins": 1,
                "user_does_not_check": True
            },
            "job_submission_strategy": {
                "type": "match_job_pdf_exact",
                "n_bins_for_pdf": 20,
                "submit_rate_factor": 8,
                "total_submit_interval": 60,
                "random_seed": 0
            }
        }

        # select the appropriate workload_filling strategy
        workloads = [
            Workload(jobs=input_jobs, tag='test_wl_0'),
            Workload(jobs=input_jobs, tag='test_wl_1'),
            Workload(jobs=input_jobs, tag='test_wl_2')
        ]

        workload_modeller = workload_modelling_types[config_generator["type"]](
            workloads)
        workload_modeller.apply(config_generator)

        # get the newly created set of (modelled) workloads
        workload_set = workload_modeller.get_workload_set()

        # make sure that we are creating only one workload
        self.assertEqual(len(workload_set.workloads), 1)

        # ---- check that all the jobs are correctly formed.. ----

        # check that each job has time-signals as expected..
        for job in workload_set.workloads[0].jobs:
            self.assertTrue(hasattr(job, "timesignals"))

        # check that each job has all the time-signals at this point..
        for job in workload_set.workloads[0].jobs:
            self.assertTrue(
                all([k in job.timesignals.keys() for k in time_signal_names]))
Beispiel #2
0
    def test_splitter(self):

        # -------------- prepare a couple of dummy jobs ---------------

        # If all of the required arguments are supplied, this should result in a valid job
        ts_complete_set = {
            tsk: TimeSignal.from_values(tsk, [0., 0.1], [1., 999.])
            for tsk in time_signal_names
        }

        ts_complete_set_2 = {
            tsk: TimeSignal.from_values(tsk, [0., 0.1], [1., 444.])
            for tsk in time_signal_names
        }

        valid_args = {
            'time_start': 0.1,
            'duration': 0.2,
            'ncpus': 1,
            'nnodes': 1,
            'timesignals': ts_complete_set,
            'job_name': "job_name_1"
        }

        valid_args_2 = {
            'time_start': 0.2,
            'duration': 0.4,
            'ncpus': 2,
            'nnodes': 2,
            'timesignals': ts_complete_set_2,
            'job_name': "job_name_2"
        }

        # a model job that WILL NOT be picked by the algorithm..
        job1 = ModelJob(**valid_args)
        job1.label = "label_nottobepicked"

        # a model job that WILL be picked by the algorithm..
        job2 = ModelJob(**valid_args_2)
        job2.label = "label_includeme"

        # dummy workload with 20 jobs
        np.random.seed(0)
        jobs_all = []
        for i in range(20):

            # spawn a new job from either job1 or job2
            if np.random.rand() < 0.5:
                new_job = copy.deepcopy(job1)
            else:
                new_job = copy.deepcopy(job2)

            # assign it a new label
            jobs_all.append(new_job)

        # create a workload out of all the jobs..
        workload = Workload(jobs=jobs_all, tag="testing_workload")

        # configure the splitter from user config
        config_splitting = {
            "type": "split",
            "keywords_in": ["includeme"],
            "keywords_out": ["excludeme"],
            "split_by": "label",
            "apply_to": ["testing_workload"],
            "create_workload": "spawn_workload"
        }

        workloads = [workload]
        splitter = WorkloadSplit(workloads)
        splitter.apply(config_splitting)

        wl_out = None
        for wl in workloads:
            if wl.tag == config_splitting["create_workload"]:
                wl_out = wl
                break

        # make sure that we have created a workload as expected
        self.assertTrue(wl_out is not None)
        self.assertEqual(wl_out.tag, config_splitting["create_workload"])

        # make sure that all the jobs have a label consistent with the filter
        for j in wl_out.jobs:
            self.assertTrue("includeme" in j.label
                            and "excludeme" not in j.label)