def test_evaluating(self, simple_model, simple_data): """ Tests that an evaluation run can succeed. """ simple_model.parse(None) simple_model.build() evaluator = Executor(model=simple_model) evaluator.evaluate(provider=simple_data)
def test_trainer_without_optimizer(self, simple_model, loss): """ Tests if we can compile a Executor instance without an optimizer. """ simple_model.parse(None) simple_model.build() trainer = Executor(model=simple_model, loss=loss) trainer.compile()
def test_training(self, simple_model, loss, optimizer, simple_data): """ Tests that a single training epoch can succeed. """ simple_model.parse(None) simple_model.build() trainer = Executor(model=simple_model, loss=loss, optimizer=optimizer) trainer.train(provider=simple_data, stop_when={'epochs': 1})
def test_testing(self, simple_model, loss, simple_data): """ Tests that a testing run can succeed. """ simple_model.parse(None) simple_model.build() trainer = Executor(model=simple_model, loss=loss) trainer.test(providers={'default': simple_data})
def test_evaluator(self, simple_model): """ Tests if we can compile an Executor instance. """ simple_model.parse(None) simple_model.build() evaluator = Executor(model=simple_model) evaluator.compile()
def test_uber_evaluating(self, uber_model, uber_data, jinja_engine): """ Tests that we can evaluate a very diverse model. """ uber_model.parse(jinja_engine) uber_model.register_provider(uber_data) uber_model.build() evaluator = Executor(model=uber_model) evaluator.evaluate(provider=uber_data)
def test_embedding_evaluating(self, embedding_model, embedding_data): """ Tests that we can evaluate a model that has an Embedding. """ embedding_model.parse(None) embedding_model.register_provider(embedding_data) embedding_model.build() evaluator = Executor(model=embedding_model) evaluator.evaluate(provider=embedding_data)
def test_ctc_evaluating(self, ctc_model, ctc_eval_data): """ Tests that we can evaluate a model that was trained with CTC loss. """ ctc_model.parse(None) ctc_model.register_provider(ctc_eval_data) ctc_model.build() evaluator = Executor(model=ctc_model) evaluator.evaluate(provider=ctc_eval_data)
def test_embedding_test(self, embedding_model, embedding_data, loss): """ Tests that we can compile and test a model which has an Embedding. function. """ embedding_model.parse(None) embedding_model.register_provider(embedding_data) embedding_model.build() trainer = Executor(model=embedding_model, loss=loss) trainer.test(providers={'default': embedding_data})
def test_ctc_test(self, ctc_model, ctc_data, ctc_loss): """ Tests that we can compile and test a model using the CTC loss function. """ ctc_model.parse(None) ctc_model.register_provider(ctc_data) ctc_model.build() trainer = Executor(model=ctc_model, loss=ctc_loss) trainer.test(providers={'default': ctc_data})
def test_evaluating(self, simple_model, simple_data): """ Tests that an evaluation run can succeed. """ simple_model.parse(None) simple_model.build() evaluator = Executor( model=simple_model ) evaluator.evaluate(provider=simple_data)
def test_ctc_train(self, ctc_model, ctc_data, ctc_loss, optimizer): """ Tests that we can compile and train a model using the CTC loss function. """ ctc_model.parse(None) ctc_model.register_provider(ctc_data) ctc_model.build() trainer = Executor(model=ctc_model, loss=ctc_loss, optimizer=optimizer) trainer.train(provider=ctc_data, stop_when={'epochs': 1})
def test_evaluator(self, simple_model): """ Tests if we can compile an Executor instance. """ simple_model.parse(None) simple_model.build() evaluator = Executor( model=simple_model ) evaluator.compile()
def test_uber_evaluating(self, uber_model, uber_data, jinja_engine): """ Tests that we can evaluate a very diverse model. """ uber_model.parse(jinja_engine) uber_model.register_provider(uber_data) uber_model.build() evaluator = Executor( model=uber_model ) evaluator.evaluate(provider=uber_data)
def test_ctc_evaluating(self, ctc_model, ctc_eval_data): """ Tests that we can evaluate a model that was trained with CTC loss. """ ctc_model.parse(None) ctc_model.register_provider(ctc_eval_data) ctc_model.build() evaluator = Executor( model=ctc_model ) evaluator.evaluate(provider=ctc_eval_data)
def test_embedding_evaluating(self, embedding_model, embedding_data): """ Tests that we can evaluate a model that has an Embedding. """ embedding_model.parse(None) embedding_model.register_provider(embedding_data) embedding_model.build() evaluator = Executor( model=embedding_model ) evaluator.evaluate(provider=embedding_data)
def test_trainer_without_optimizer(self, simple_model, loss): """ Tests if we can compile a Executor instance without an optimizer. """ simple_model.parse(None) simple_model.build() trainer = Executor( model=simple_model, loss=loss ) trainer.compile()
def test_testing(self, simple_model, loss, simple_data): """ Tests that a testing run can succeed. """ simple_model.parse(None) simple_model.build() trainer = Executor( model=simple_model, loss=loss ) trainer.test(providers={'default' : simple_data})
def test_embedding_train(self, embedding_model, embedding_data, loss, optimizer): """ Tests that we can compile and train a model which has an Embedding. """ embedding_model.parse(None) embedding_model.register_provider(embedding_data) embedding_model.build() trainer = Executor(model=embedding_model, loss=loss, optimizer=optimizer) trainer.train(provider=embedding_data, stop_when={'epochs': 1})
def test_training(self, simple_model, loss, optimizer, simple_data): """ Tests that a single training epoch can succeed. """ simple_model.parse(None) simple_model.build() trainer = Executor( model=simple_model, loss=loss, optimizer=optimizer ) trainer.train(provider=simple_data, stop_when={'epochs' : 1})
def test_ctc_test(self, ctc_model, ctc_data, ctc_loss): """ Tests that we can compile and test a model using the CTC loss function. """ ctc_model.parse(None) ctc_model.register_provider(ctc_data) ctc_model.build() trainer = Executor( model=ctc_model, loss=ctc_loss ) trainer.test(providers={'default' : ctc_data})
def test_uber_test(self, uber_model, uber_data, jinja_engine, loss): """ Tests that we can compile and test a diverse model. """ uber_model.parse(jinja_engine) uber_model.register_provider(uber_data) uber_model.build() trainer = Executor( model=uber_model, loss=loss ) trainer.compile() trainer.test(providers={'default' : uber_data})
def test_embedding_test(self, embedding_model, embedding_data, loss): """ Tests that we can compile and test a model which has an Embedding. function. """ embedding_model.parse(None) embedding_model.register_provider(embedding_data) embedding_model.build() trainer = Executor( model=embedding_model, loss=loss ) trainer.test(providers={'default' : embedding_data})
def test_ctc_train(self, ctc_model, ctc_data, ctc_loss, optimizer): """ Tests that we can compile and train a model using the CTC loss function. """ ctc_model.parse(None) ctc_model.register_provider(ctc_data) ctc_model.build() trainer = Executor( model=ctc_model, loss=ctc_loss, optimizer=optimizer ) trainer.train(provider=ctc_data, stop_when={'epochs' : 1})
def test_embedding_train(self, embedding_model, embedding_data, loss, optimizer): """ Tests that we can compile and train a model which has an Embedding. """ embedding_model.parse(None) embedding_model.register_provider(embedding_data) embedding_model.build() trainer = Executor( model=embedding_model, loss=loss, optimizer=optimizer ) trainer.train(provider=embedding_data, stop_when={'epochs' : 1})
def test_uber_train(self, uber_model, uber_data, jinja_engine, loss, optimizer): """ Tests that we can compile and train a diverse model. """ if uber_model.get_backend().get_name() == 'keras' and \ uber_model.get_backend().keras_version() == 2 and \ uber_model.get_backend().get_toolchain() == 'tensorflow' and \ sys.version_info < (3, 5): pytest.skip('Occassional SIGSEGV') uber_model.parse(jinja_engine) uber_model.register_provider(uber_data) uber_model.build() trainer = Executor( model=uber_model, loss=loss, optimizer=optimizer ) trainer.compile() trainer.train(provider=uber_data, stop_when={'epochs' : 1})
def test_uber_test(self, uber_model, uber_data, jinja_engine, loss): """ Tests that we can compile and test a diverse model. """ uber_model.parse(jinja_engine) uber_model.register_provider(uber_data) uber_model.build() trainer = Executor(model=uber_model, loss=loss) trainer.compile() trainer.test(providers={'default': uber_data})
def test_uber_train(self, uber_model, uber_data, jinja_engine, loss, optimizer): """ Tests that we can compile and train a diverse model. """ uber_model.parse(jinja_engine) uber_model.register_provider(uber_data) uber_model.build() trainer = Executor(model=uber_model, loss=loss, optimizer=optimizer) trainer.compile() trainer.train(provider=uber_data, stop_when={'epochs': 1})
def test_uber_train(self, uber_model, uber_data, jinja_engine, loss, optimizer): """ Tests that we can compile and train a diverse model. """ if uber_model.get_backend().get_name() == 'keras' and \ uber_model.get_backend().keras_version() == 2 and \ uber_model.get_backend().get_toolchain() == 'tensorflow' and \ sys.version_info < (3, 5): pytest.skip('Occassional SIGSEGV') uber_model.parse(jinja_engine) uber_model.register_provider(uber_data) uber_model.build() trainer = Executor(model=uber_model, loss=loss, optimizer=optimizer) trainer.compile() trainer.train(provider=uber_data, stop_when={'epochs': 1})