Beispiel #1
0
    def test_evaluating(self, simple_model, simple_data):
        """ Tests that an evaluation run can succeed.
		"""
        simple_model.parse(None)
        simple_model.build()
        evaluator = Executor(model=simple_model)
        evaluator.evaluate(provider=simple_data)
Beispiel #2
0
    def test_trainer_without_optimizer(self, simple_model, loss):
        """ Tests if we can compile a Executor instance without an optimizer.
		"""
        simple_model.parse(None)
        simple_model.build()
        trainer = Executor(model=simple_model, loss=loss)
        trainer.compile()
Beispiel #3
0
    def test_training(self, simple_model, loss, optimizer, simple_data):
        """ Tests that a single training epoch can succeed.
		"""
        simple_model.parse(None)
        simple_model.build()
        trainer = Executor(model=simple_model, loss=loss, optimizer=optimizer)
        trainer.train(provider=simple_data, stop_when={'epochs': 1})
Beispiel #4
0
    def test_testing(self, simple_model, loss, simple_data):
        """ Tests that a testing run can succeed.
		"""
        simple_model.parse(None)
        simple_model.build()
        trainer = Executor(model=simple_model, loss=loss)
        trainer.test(providers={'default': simple_data})
Beispiel #5
0
    def test_evaluator(self, simple_model):
        """ Tests if we can compile an Executor instance.
		"""
        simple_model.parse(None)
        simple_model.build()
        evaluator = Executor(model=simple_model)
        evaluator.compile()
Beispiel #6
0
    def test_uber_evaluating(self, uber_model, uber_data, jinja_engine):
        """ Tests that we can evaluate a very diverse model.
		"""
        uber_model.parse(jinja_engine)
        uber_model.register_provider(uber_data)
        uber_model.build()
        evaluator = Executor(model=uber_model)
        evaluator.evaluate(provider=uber_data)
Beispiel #7
0
    def test_embedding_evaluating(self, embedding_model, embedding_data):
        """ Tests that we can evaluate a model that has an Embedding.
		"""
        embedding_model.parse(None)
        embedding_model.register_provider(embedding_data)
        embedding_model.build()
        evaluator = Executor(model=embedding_model)
        evaluator.evaluate(provider=embedding_data)
Beispiel #8
0
    def test_ctc_evaluating(self, ctc_model, ctc_eval_data):
        """ Tests that we can evaluate a model that was trained with CTC loss.
		"""
        ctc_model.parse(None)
        ctc_model.register_provider(ctc_eval_data)
        ctc_model.build()
        evaluator = Executor(model=ctc_model)
        evaluator.evaluate(provider=ctc_eval_data)
Beispiel #9
0
    def test_embedding_test(self, embedding_model, embedding_data, loss):
        """ Tests that we can compile and test a model which has an Embedding.
			function.
		"""
        embedding_model.parse(None)
        embedding_model.register_provider(embedding_data)
        embedding_model.build()
        trainer = Executor(model=embedding_model, loss=loss)
        trainer.test(providers={'default': embedding_data})
Beispiel #10
0
    def test_ctc_test(self, ctc_model, ctc_data, ctc_loss):
        """ Tests that we can compile and test a model using the CTC loss
			function.
		"""
        ctc_model.parse(None)
        ctc_model.register_provider(ctc_data)
        ctc_model.build()
        trainer = Executor(model=ctc_model, loss=ctc_loss)
        trainer.test(providers={'default': ctc_data})
Beispiel #11
0
	def test_evaluating(self, simple_model, simple_data):
		""" Tests that an evaluation run can succeed.
		"""
		simple_model.parse(None)
		simple_model.build()
		evaluator = Executor(
			model=simple_model
		)
		evaluator.evaluate(provider=simple_data)
Beispiel #12
0
    def test_ctc_train(self, ctc_model, ctc_data, ctc_loss, optimizer):
        """ Tests that we can compile and train a model using the CTC loss
			function.
		"""
        ctc_model.parse(None)
        ctc_model.register_provider(ctc_data)
        ctc_model.build()
        trainer = Executor(model=ctc_model, loss=ctc_loss, optimizer=optimizer)
        trainer.train(provider=ctc_data, stop_when={'epochs': 1})
Beispiel #13
0
	def test_evaluator(self, simple_model):
		""" Tests if we can compile an Executor instance.
		"""
		simple_model.parse(None)
		simple_model.build()
		evaluator = Executor(
			model=simple_model
		)
		evaluator.compile()
Beispiel #14
0
	def test_uber_evaluating(self, uber_model, uber_data, jinja_engine):
		""" Tests that we can evaluate a very diverse model.
		"""
		uber_model.parse(jinja_engine)
		uber_model.register_provider(uber_data)
		uber_model.build()
		evaluator = Executor(
			model=uber_model
		)
		evaluator.evaluate(provider=uber_data)
Beispiel #15
0
	def test_ctc_evaluating(self, ctc_model, ctc_eval_data):
		""" Tests that we can evaluate a model that was trained with CTC loss.
		"""
		ctc_model.parse(None)
		ctc_model.register_provider(ctc_eval_data)
		ctc_model.build()
		evaluator = Executor(
			model=ctc_model
		)
		evaluator.evaluate(provider=ctc_eval_data)
Beispiel #16
0
	def test_embedding_evaluating(self, embedding_model, embedding_data):
		""" Tests that we can evaluate a model that has an Embedding.
		"""
		embedding_model.parse(None)
		embedding_model.register_provider(embedding_data)
		embedding_model.build()
		evaluator = Executor(
			model=embedding_model
		)
		evaluator.evaluate(provider=embedding_data)
Beispiel #17
0
	def test_trainer_without_optimizer(self, simple_model, loss):
		""" Tests if we can compile a Executor instance without an optimizer.
		"""
		simple_model.parse(None)
		simple_model.build()
		trainer = Executor(
			model=simple_model,
			loss=loss
		)
		trainer.compile()
Beispiel #18
0
	def test_testing(self, simple_model, loss, simple_data):
		""" Tests that a testing run can succeed.
		"""
		simple_model.parse(None)
		simple_model.build()
		trainer = Executor(
			model=simple_model,
			loss=loss
		)
		trainer.test(providers={'default' : simple_data})
Beispiel #19
0
    def test_embedding_train(self, embedding_model, embedding_data, loss,
                             optimizer):
        """ Tests that we can compile and train a model which has an Embedding.
		"""
        embedding_model.parse(None)
        embedding_model.register_provider(embedding_data)
        embedding_model.build()
        trainer = Executor(model=embedding_model,
                           loss=loss,
                           optimizer=optimizer)
        trainer.train(provider=embedding_data, stop_when={'epochs': 1})
Beispiel #20
0
	def test_training(self, simple_model, loss, optimizer, simple_data):
		""" Tests that a single training epoch can succeed.
		"""
		simple_model.parse(None)
		simple_model.build()
		trainer = Executor(
			model=simple_model,
			loss=loss,
			optimizer=optimizer
		)
		trainer.train(provider=simple_data, stop_when={'epochs' : 1})
Beispiel #21
0
	def test_ctc_test(self, ctc_model, ctc_data, ctc_loss):
		""" Tests that we can compile and test a model using the CTC loss
			function.
		"""
		ctc_model.parse(None)
		ctc_model.register_provider(ctc_data)
		ctc_model.build()
		trainer = Executor(
			model=ctc_model,
			loss=ctc_loss
		)
		trainer.test(providers={'default' : ctc_data})
Beispiel #22
0
	def test_uber_test(self, uber_model, uber_data, jinja_engine, loss):
		""" Tests that we can compile and test a diverse model.
		"""
		uber_model.parse(jinja_engine)
		uber_model.register_provider(uber_data)
		uber_model.build()
		trainer = Executor(
			model=uber_model,
			loss=loss
		)
		trainer.compile()
		trainer.test(providers={'default' : uber_data})
Beispiel #23
0
	def test_embedding_test(self, embedding_model, embedding_data, loss):
		""" Tests that we can compile and test a model which has an Embedding.
			function.
		"""
		embedding_model.parse(None)
		embedding_model.register_provider(embedding_data)
		embedding_model.build()
		trainer = Executor(
			model=embedding_model,
			loss=loss
		)
		trainer.test(providers={'default' : embedding_data})
Beispiel #24
0
	def test_ctc_train(self, ctc_model, ctc_data, ctc_loss, optimizer):
		""" Tests that we can compile and train a model using the CTC loss
			function.
		"""
		ctc_model.parse(None)
		ctc_model.register_provider(ctc_data)
		ctc_model.build()
		trainer = Executor(
			model=ctc_model,
			loss=ctc_loss,
			optimizer=optimizer
		)
		trainer.train(provider=ctc_data, stop_when={'epochs' : 1})
Beispiel #25
0
	def test_embedding_train(self, embedding_model, embedding_data, loss,
		optimizer):
		""" Tests that we can compile and train a model which has an Embedding.
		"""
		embedding_model.parse(None)
		embedding_model.register_provider(embedding_data)
		embedding_model.build()
		trainer = Executor(
			model=embedding_model,
			loss=loss,
			optimizer=optimizer
		)
		trainer.train(provider=embedding_data, stop_when={'epochs' : 1})
Beispiel #26
0
	def test_uber_train(self, uber_model, uber_data, jinja_engine, loss,
		optimizer):
		""" Tests that we can compile and train a diverse model.
		"""
		if uber_model.get_backend().get_name() == 'keras' and \
			uber_model.get_backend().keras_version() == 2 and \
			uber_model.get_backend().get_toolchain() == 'tensorflow' and \
			sys.version_info < (3, 5):
			pytest.skip('Occassional SIGSEGV')

		uber_model.parse(jinja_engine)
		uber_model.register_provider(uber_data)
		uber_model.build()
		trainer = Executor(
			model=uber_model,
			loss=loss,
			optimizer=optimizer
		)
		trainer.compile()
		trainer.train(provider=uber_data, stop_when={'epochs' : 1})
Beispiel #27
0
    def test_uber_test(self, uber_model, uber_data, jinja_engine, loss):
        """ Tests that we can compile and test a diverse model.
		"""
        uber_model.parse(jinja_engine)
        uber_model.register_provider(uber_data)
        uber_model.build()
        trainer = Executor(model=uber_model, loss=loss)
        trainer.compile()
        trainer.test(providers={'default': uber_data})
Beispiel #28
0
    def test_uber_train(self, uber_model, uber_data, jinja_engine, loss,
                        optimizer):
        """ Tests that we can compile and train a diverse model.
		"""
        uber_model.parse(jinja_engine)
        uber_model.register_provider(uber_data)
        uber_model.build()
        trainer = Executor(model=uber_model, loss=loss, optimizer=optimizer)
        trainer.compile()
        trainer.train(provider=uber_data, stop_when={'epochs': 1})
Beispiel #29
0
    def test_uber_train(self, uber_model, uber_data, jinja_engine, loss,
                        optimizer):
        """ Tests that we can compile and train a diverse model.
		"""
        if uber_model.get_backend().get_name() == 'keras' and \
         uber_model.get_backend().keras_version() == 2 and \
         uber_model.get_backend().get_toolchain() == 'tensorflow' and \
         sys.version_info < (3, 5):
            pytest.skip('Occassional SIGSEGV')

        uber_model.parse(jinja_engine)
        uber_model.register_provider(uber_data)
        uber_model.build()
        trainer = Executor(model=uber_model, loss=loss, optimizer=optimizer)
        trainer.compile()
        trainer.train(provider=uber_data, stop_when={'epochs': 1})