Beispiel #1
0
def check_models_existence() -> List:
    """
    depth_edge_model_ckpt: checkpoints/edge-model.pth
    depth_feat_model_ckpt: checkpoints/depth-model.pth
    rgb_feat_model_ckpt: checkpoints/color-model.pth
    MiDaS_model_ckpt: MiDaS/model.pt
    """
    missing = []
    for name, filename in MODELS.items():
        if not (MODELS_DIR / filename).is_file():
            missing.append(name)
            continue
        remote_size = get_total_size([f'{MODELS_URL_ROOT}/{MODELS[name]}'])
        local_size = (MODELS_DIR / filename).lstat().st_size
        if remote_size != local_size:
            missing.append(name)
            print(
                f(
                    _('File {MODELS[name]} is incorrect (remote: {remote_size} != local: {local_size}). Will re-download.'
                      )))

    if missing:
        print(
            f(
                _('The following models are missing: {", ".join(MODELS[m] for m in missing)}! Please download them first.'
                  )))
        print(_('You can find them there:'))
        print(*[f'{MODELS_URL_ROOT}/{MODELS[m]}' for m in missing], sep='\n')
        print(f(_('Please put them in {MODELS_DIR}')))

    return missing
Beispiel #2
0
def make_video(sample, config, props, depth, normal_canvas, all_canvas):
    image = imageio.imread(sample['ref_img_fi'])

    mean_loc_depth = depth[depth.shape[0] // 2, depth.shape[1] // 2]

    verts, colors, faces, Height, Width, hFov, vFov = props

    print(f(_("Making video at {datetime.now():%Y-%m-%d %H:%M:%S.%f}")))
    videos_poses, video_basename = copy.deepcopy(sample['tgts_poses']), sample['tgt_name']
    top = (config.get('original_h') // 2 - sample['int_mtx'][1, 2] * config['output_h'])
    left = (config.get('original_w') // 2 - sample['int_mtx'][0, 2] * config['output_w'])
    down, right = top + config['output_h'], left + config['output_w']
    border = [int(xx) for xx in [top, down, left, right]]
    normal_canvas, all_canvas = output_3d_photo(verts.copy(), colors.copy(), faces.copy(), copy.deepcopy(Height),
                                                copy.deepcopy(Width), copy.deepcopy(hFov), copy.deepcopy(vFov),
                                                copy.deepcopy(sample['tgt_pose']), sample['video_postfix'],
                                                copy.deepcopy(sample['ref_pose']),
                                                copy.deepcopy(config['video_folder']),
                                                image.copy(), copy.deepcopy(sample['int_mtx']), config, image,
                                                videos_poses, video_basename, config.get('original_h'),
                                                config.get('original_w'), border=border, depth=depth,
                                                normal_canvas=normal_canvas, all_canvas=all_canvas,
                                                mean_loc_depth=mean_loc_depth)

    print(f(_("{len(sample['video_postfix'])} videos done in {Path(config['video_folder']).resolve()}")))
Beispiel #3
0
 def choose(self):
     '''
     Call plyer filechooser API to run a filechooser Activity.
     '''
     path = Path(self.bnd_text_input.text)
     is_valid_path = Path(
         path := os.path.dirname(path)).exists() and bool(path)
     properties = dict(
         on_selection=self.handle_selection,
         title=_("Pick a JPG file.."),
         multiple=False,
         path=path if is_valid_path else os.path.expanduser("~"),
         filters=[(_("Image file (jpg)"), "*.jpg")])
     properties.update(self.filetype)
     filechooser.open_file(**properties)
Beispiel #4
0
def load_rgb_model(device: str, rgb_feat_model_ckpt: str) -> Inpaint_Color_Net:
    print(f(_("Loading rgb model at {datetime.now():%Y-%m-%d %H:%M:%S.%f}")))
    rgb_model = Inpaint_Color_Net()
    rgb_feat_weight = torch.load(rgb_feat_model_ckpt, map_location=torch.device(device))
    rgb_model.load_state_dict(rgb_feat_weight)
    rgb_model.eval()
    return rgb_model.to(device)
Beispiel #5
0
def load_depth_model(device: str, depth_feat_model_ckpt: str) -> Inpaint_Depth_Net:
    print(f(_("Loading depth model at {datetime.now():%Y-%m-%d %H:%M:%S.%f}")))
    depth_feat_model = Inpaint_Depth_Net()
    depth_feat_weight = torch.load(depth_feat_model_ckpt, map_location=torch.device(device))
    depth_feat_model.load_state_dict(depth_feat_weight, strict=True)
    depth_feat_model = depth_feat_model.to(device)
    depth_feat_model.eval()
    return depth_feat_model.to(device)
    def download_thread(self):
        print(_('Will start downloading the models...'))
        try:
            download_models(
                self.missing_models,
                bar_total=self.bar_total,
                bar_current=self.bar_current,
            )
            self.missing_models = []
        except Exception as e:
            print(e)
            exc_type, exc_value, exc_traceback = sys.exc_info()
            traceback.print_exception(exc_type, exc_value, exc_traceback,
                                      file=sys.stdout)
            print(_('Model download: Done (failure).'))
        else:
            print(_('Model download: Done (success).'))

        self.revalidate()
 def deep_thread(self):
     print(_('Will start working...'))
     try:
         wrap_3d_pi_with_override(
             Path(self.image_handler.bnd_image.source),
             depth_handler=self.depth_handler,
             bar_total=self.bar_total,
             bar_current=self.bar_current,
             just_depth=False,
         )
     except Exception as e:
         print(e)
         exc_type, exc_value, exc_traceback = sys.exc_info()
         traceback.print_exception(exc_type, exc_value, exc_traceback,
                                   file=sys.stdout)
         print(_('Done working: failure!'))
     else:
         print(_('Done working: success!'))
     self.tr_text = START_DEEP
     self.revalidate()
Beispiel #8
0
class FileChoose(Button):
    '''
    Button that triggers 'filechooser.open_file()' and processes
    the data response from filechooser Activity.
    '''

    selection = ListProperty([])
    filetype = DictProperty({"title": _("Pick a file..."), "filters": []})
    bnd_text_input = ObjectProperty(None)
    bnd_image = ObjectProperty(None)

    def choose(self):
        '''
        Call plyer filechooser API to run a filechooser Activity.
        '''
        path = Path(self.bnd_text_input.text)
        is_valid_path = Path(
            path := os.path.dirname(path)).exists() and bool(path)
        properties = dict(
            on_selection=self.handle_selection,
            title=_("Pick a JPG file.."),
            multiple=False,
            path=path if is_valid_path else os.path.expanduser("~"),
            filters=[(_("Image file (jpg)"), "*.jpg")])
        properties.update(self.filetype)
        filechooser.open_file(**properties)

    def handle_selection(self, selection):
        '''
        Callback function for handling the selection response from Activity.
        '''
        self.selection = selection

    def on_selection(self, *a, **k):
        '''
        Update TextInput.text after FileChoose.selection is changed
        via FileChoose.handle_selection.
        '''
        self.bnd_text_input.text = str(self.selection[0])
        self.bnd_image.set_source(Path(str(self.selection[0])))
Beispiel #9
0
def download_models(models: List,
                    *,
                    bar_total: Optional[ComplexProgressBar] = None,
                    bar_current: Optional[ComplexProgressBar] = None):
    os.makedirs(MODELS_DIR, exist_ok=True)

    to_download = []
    for model in models:
        if model not in MODELS:
            raise ValueError(f(_("Unknown model {model}!")))
        remote_url = f'{MODELS_URL_ROOT}/{MODELS[model]}'
        local_path = MODELS_DIR / MODELS[model]
        to_download.append((remote_url, local_path))

    if bar_total is not None:
        size = get_total_size([i[0] for i in to_download])
        bar_total.max = size
        bar_total.text = lambda *, internal_name, max_: f"{internal_name} 0 / {sizeof_fmt(max_)}"

    for remote_url, local_path in to_download:
        download_file(remote_url,
                      local_path,
                      bar_total=bar_total,
                      bar_current=bar_current)
Beispiel #10
0
def wrap_3d_pi_with_override(image_filename: Path, *,
                             depth_handler: Optional[FileChoose] = None,
                             bar_total: Optional[ComplexProgressBar] = None,
                             bar_current: Optional[ComplexProgressBar] = None,
                             just_depth: bool = False,
                             ):
    # with the GUI we always have exactly 1 input image file
    number_input_image = 1
    bar_total.reset()
    bar_current.reset()
    real_image_filename = image_filename.resolve()
    if not real_image_filename.is_file():
        raise ValueError(f(_('File {real_image_filename} does not exist!')))

    chunk, ext = os.path.splitext(real_image_filename)
    dirname, filename = os.path.split(chunk)
    origin_conf = CONFIG_CUSTOM if CONFIG_CUSTOM.is_file() else CONFIG_ORIGIN
    with open(origin_conf, 'r') as config_file:
        config = yaml.load(config_file)

    config['depth_folder'] = str(Path(config['depth_folder']).resolve())
    config['mesh_folder'] = str(Path(config['mesh_folder']).resolve())
    config['video_folder'] = str(Path(config['video_folder']).resolve())
    config['src_folder'] = dirname
    config['specific'] = filename
    config['img_format'] = ext
    for name, filename in MODELS.items():
        config[name] = str(MODELS_DIR / filename)

    missing_models = check_models_existence()

    with open(CONFIG_CUSTOM, 'w') as config_file:
        yaml.dump(config, config_file, default_flow_style=None)

    if not just_depth:
        from_file = Path(depth_handler.bnd_image.source).resolve()
        to_file = Path(config['depth_folder'], from_file.parts[-1].rsplit('.', maxsplit=1)[0] + '.png')

        if from_file.samefile(to_file):
            print(f(_('Depth file {from_file} is already in the correct location. No copy needed.')))
        else:
            print(f(_('Copying Depth file from {from_file} to {to_file}')))
            shutil.copy(str(from_file), str(to_file))
            update_image_handler(image_handler=depth_handler, path=to_file)

        inject_write_videofile(
            num_videos=len(config['video_postfix']) * number_input_image,
            total_allocated_percent=20 / 100,
            bar_total=bar_total,
            bar_current=bar_current,
        )

    if not missing_models:
        bar_current.add(bar_current.max)
        bar_total.add(bar_total.max * 2 / 100)
        wrap_3d_photo_inpainting(
            CONFIG_CUSTOM,
            depth_handler=depth_handler,
            bar_total=bar_total,
            bar_current=bar_current,
            just_depth=just_depth
        )
    else:
        raise ValueError(_("Models have not been downloaded!"))
Beispiel #11
0
def load_edge_model(device: str, depth_edge_model_ckpt: str) -> Inpaint_Edge_Net:
    print(f(_("Loading edge model at {datetime.now():%Y-%m-%d %H:%M:%S.%f}")))
    depth_edge_model = Inpaint_Edge_Net(init_weights=True)
    depth_edge_weight = torch.load(depth_edge_model_ckpt, map_location=torch.device(device))
    depth_edge_model.load_state_dict(depth_edge_weight)
    return depth_edge_model.to(device)
Beispiel #12
0
def wrap_3d_photo_inpainting(config_path, *,
                             depth_handler: Optional[FileChoose] = None,
                             bar_total: Optional[ComplexProgressBar] = None,
                             bar_current: Optional[ComplexProgressBar] = None,
                             just_depth: bool = False
                             ):
    bar_current.reset()
    config = yaml.load(open(config_path, 'r'))
    if config['offscreen_rendering'] is True:
        vispy.use(app='egl')
    init_fs(config)
    sample_list = get_MiDaS_samples(config['src_folder'], config['depth_folder'], config, config['specific'])
    normal_canvas, all_canvas = None, None

    if isinstance(config["gpu_ids"], int) and (config["gpu_ids"] >= 0):
        device = config["gpu_ids"]
    else:
        device = "cpu"

    bar_current.add(bar_current.max)
    bar_total.add(bar_total.max * 2 / 100)

    print(f(_("running on device {device}")))

    for idx in tqdm(range(len(sample_list))):
        bar_current.reset()
        depth = None
        sample = sample_list[idx]
        print(f(_("Current Source ==> {sample['src_pair_name']}")))
        mesh_fi = os.path.join(config['mesh_folder'], sample['src_pair_name'] +'.ply')
        image = imageio.imread(sample['ref_img_fi'])

        print(f(_("Running depth extraction at {datetime.now():%Y-%m-%d %H:%M:%S.%f}")))
        if just_depth or config['require_midas'] is True:
            run_depth([sample['ref_img_fi']], config['src_folder'], config['depth_folder'],
                      config['MiDaS_model_ckpt'], MonoDepthNet, MiDaS_utils, target_w=640)

            update_image_handler(image_handler=depth_handler,
                                 path=Path(f"{config['depth_folder']}/{sample['src_pair_name']}.png"))

        if just_depth:
            bar_total.reset()
            bar_total.value = bar_total.max
            bar_current.reset()
            bar_current.value = bar_current.max
            return

        bar_current.add(bar_current.max)
        bar_total.add(bar_total.max * (2 / len(sample_list)) / 100)

        bar_current.reset()

        image = prepare_config_and_image(config=config, sample=sample, image=image)

        bar_current.add(bar_current.max)
        bar_total.add(bar_total.max * (2 / len(sample_list)) / 100)

        bar_current.reset()

        image = cv2.resize(image, (config['output_w'], config['output_h']), interpolation=cv2.INTER_AREA)
        depth = read_MiDaS_depth(sample['depth_fi'], 3.0, config['output_h'], config['output_w'])
        mean_loc_depth = depth[depth.shape[0]//2, depth.shape[1]//2]

        bar_current.add(bar_current.max)
        bar_total.add(bar_total.max * (2 / len(sample_list)) / 100)

        bar_current.reset()

        if not(config['load_ply'] is True and os.path.exists(mesh_fi)):
            vis_photos, vis_depths = sparse_bilateral_filtering(depth.copy(), image.copy(), config, num_iter=config['sparse_iter'], spdb=False)
            depth = vis_depths[-1]
            model = None
            torch.cuda.empty_cache()
            print(_("Start Running 3D_Photo ..."))

            depth_edge_model = load_edge_model(device=device, depth_edge_model_ckpt=config['depth_edge_model_ckpt'])
            depth_edge_model.eval()

            depth_feat_model = load_depth_model(device=device, depth_feat_model_ckpt=config['depth_feat_model_ckpt'])

            rgb_model = load_rgb_model(device=device, rgb_feat_model_ckpt=config['rgb_feat_model_ckpt'])
            graph = None

            def up_bars(dt=None):
                bar_current.add(bar_current.max * 1.5 / 100)
                bar_total.add(bar_total.max * (1 / len(sample_list)) / 100)

            # increase the bars every 5 sec, up to 5 min
            event = schedule_interval(up_bars, 5, 60 * 5)

            print(f(_("Writing depth ply (and basically doing everything) at {datetime.now():%Y-%m-%d %H:%M:%S.%f}")))
            rt_info = write_ply(image,
                                  depth,
                                  sample['int_mtx'],
                                  mesh_fi,
                                  config,
                                  rgb_model,
                                  depth_edge_model,
                                  depth_edge_model,
                                  depth_feat_model)

            if rt_info is False:
                continue
            rgb_model = None
            color_feat_model = None
            depth_edge_model = None
            depth_feat_model = None
            torch.cuda.empty_cache()

            event.cancel()

        bar_current.add(bar_current.max)
        bar_total.value_normalized = 75 / 100

        bar_current.reset()

        props = read_ply(mesh_fi) if config['save_ply'] is True or config['load_ply'] is True else rt_info
        make_video(
            sample=sample, config=config, props=props,
            depth=depth, normal_canvas=normal_canvas, all_canvas=all_canvas,
        )

        bar_current.value_normalized = 1
        bar_total.value_normalized = 1
 def tr_text(self, value):
     self.text = _(value)
 def __eq__(self, other):
     return super(TranslatedStr, self).__eq__(_(other))
from kivy.app import App
from kivy.clock import mainthread
from kivy.properties import ListProperty, ObjectProperty
from kivy.uix.button import Button

from wrapper import wrap_3d_pi_with_override
from utilities import download_models

from typing import TYPE_CHECKING
if TYPE_CHECKING:
    from kv_classes import ComplexProgressBar, FileChoose

from kv_classes.localization import _


START_DOWNLOAD = _('Download models (required first time)')
START_DOWNLOADING = _('Downloading models...')
START_DEEP = _('Start')
START_DEEPING = _('Working, please wait...')
START_DEPTH = _('Generate Depth file')
START_DEPTHING = _('Generating Depth file...')


class TranslatedStr(str):
    def __eq__(self, other):
        return super(TranslatedStr, self).__eq__(_(other))


class StartButton(Button):
    missing_models = ListProperty()
    depth_handler: FileChoose = ObjectProperty(None)
 def _find_child(self, type_: Type[T]) -> T:
     for child in self.children:
         if isinstance(child, type_):
             return child
     else:
         raise AttributeError(f(_("The {self.__class__} has no {type_} child!")))