def test_opservables_spin(): def onsite(site, B): return 2 * np.eye(2) + B * sigmaz L = 20 lat = kwant.lattice.chain(norbs=2) syst = kwant.Builder() syst[(lat(i) for i in range(L))] = onsite syst[lat.neighbors()] = -1 * np.eye(2) lead = kwant.Builder(kwant.TranslationalSymmetry((-1, ))) lead[lat(0)] = onsite lead[lat.neighbors()] = -1 * np.eye(2) syst.attach_lead(lead) syst.attach_lead(lead.reversed()) fsyst = syst.finalized() args = (0.1, ) down, up = kwant.wave_function(fsyst, energy=1., args=args)(0) x_hoppings = kwant.builder.HoppingKind((1, ), lat) spin_current_z = ops.Current(fsyst, sigmaz, where=x_hoppings(syst)) _test(spin_current_z, up, args=args, per_el_val=1) _test(spin_current_z, down, args=args, per_el_val=-1) # calculate spin_x torque spin_torque_x = ops.Source(fsyst, sigmax, where=[lat(L // 2)]) i = fsyst.id_by_site[lat(L // 2)] psi = up[2 * i:2 * (i + 1)] + down[2 * i:2 * (i + 1)] H_ii = onsite(None, *args) K = np.dot(H_ii, sigmax) - np.dot(sigmax, H_ii) expect = 1j * ft.reduce(np.dot, (psi.conj(), K, psi)) _test(spin_torque_x, up + down, args=args, reduced_val=expect)
def test_opservables_finite(): lat, syst = _random_square_system(3) fsyst = syst.finalized() ev, wfs = la.eigh(fsyst.hamiltonian_submatrix()) Q = ops.Density(fsyst) Qtot = ops.Density(fsyst, sum=True) J = ops.Current(fsyst) K = ops.Source(fsyst) for i, wf in enumerate(wfs.T): # wfs[:, i] is i'th eigenvector assert np.allclose(Q.act(wf), wf) # this operation is identity _test(Q, wf, reduced_val=1) # eigenvectors are normalized _test(Qtot, wf, per_el_val=1) # eigenvectors are normalized _test(J, wf, per_el_val=0) # time-reversal symmetry: no current _test(K, wf, per_el_val=0) # onsite commutes with hamiltonian # check that we get correct (complex) output for bra, ket in zip(wfs.T, wfs.T): _test(Q, bra, ket, per_el_val=(bra * ket)) # check with get_hermiticity=False Qi = ops.Density(fsyst, 1j, check_hermiticity=False) for wf in wfs.T: # wfs[:, i] is i'th eigenvector assert np.allclose(Qi.act(wf), 1j * wf) # test with different numbers of orbitals lat2 = kwant.lattice.chain(norbs=2) extra_sites = [lat2(i) for i in range(len(fsyst.sites))] syst[extra_sites] = np.eye(2) syst[zip(fsyst.sites, extra_sites)] = ta.matrix([1, 1]) fsyst = syst.finalized() ev, wfs = la.eigh(fsyst.hamiltonian_submatrix()) Q = ops.Density(fsyst) Qtot = ops.Density(fsyst, sum=True) J = ops.Current(fsyst) K = ops.Source(fsyst) for wf in wfs.T: # wfs[:, i] is i'th eigenvector assert np.allclose(Q.act(wf), wf) # this operation is identity _test(Q, wf, reduced_val=1) # eigenvectors are normalized _test(Qtot, wf, per_el_val=1) # eigenvectors are normalized _test(J, wf, per_el_val=0) # time-reversal symmetry: no current _test(K, wf, per_el_val=0) # onsite commutes with hamiltonian