Beispiel #1
0
def sequential_valid_loader(c: NLPAutoRegressionConfigs):
    """
    ### Sequential validation data loader
    """
    return SequentialDataLoader(text=c.text.valid,
                                dataset=c.text,
                                batch_size=c.batch_size,
                                seq_len=c.seq_len)
Beispiel #2
0
def sequential_train_loader(c: NLPAutoRegressionConfigs):
    """
    ### Sequential training data loader
    """
    return SequentialDataLoader(text=c.text.train,
                                dataset=c.text,
                                batch_size=c.batch_size,
                                seq_len=c.seq_len)
Beispiel #3
0
def valid_loader(c: Configs):
    """
    Create a sequential data loader for validation
    """
    return SequentialDataLoader(text=c.text.valid,
                                dataset=c.text,
                                batch_size=c.batch_size,
                                seq_len=c.seq_len)
Beispiel #4
0
def train_loader(c: Configs):
    """
    Create a sequential data loader for training
    """
    return SequentialDataLoader(text=c.text.train,
                                dataset=c.text,
                                batch_size=c.batch_size,
                                seq_len=c.seq_len)
Beispiel #5
0
    def init(self):
        # Create a configurable optimizer.
        # Parameters like learning rate can be changed by passing a dictionary when starting the experiment.
        optimizer = OptimizerConfigs()
        optimizer.parameters = self.model.parameters()
        optimizer.d_model = self.transformer.d_model
        optimizer.optimizer = 'Noam'
        self.optimizer = optimizer

        # Create a sequential data loader for training
        self.train_loader = SequentialDataLoader(text=self.text.train,
                                                 dataset=self.text,
                                                 batch_size=self.batch_size,
                                                 seq_len=self.seq_len)

        # Create a sequential data loader for validation
        self.valid_loader = SequentialDataLoader(text=self.text.valid,
                                                 dataset=self.text,
                                                 batch_size=self.batch_size,
                                                 seq_len=self.seq_len)

        self.state_modules = [self.accuracy]
def train_loader(c: Configs):
    return SequentialDataLoader(text=c.text.valid,
                                dataset=c.text,
                                batch_size=c.batch_size,
                                seq_len=c.seq_len)