Beispiel #1
0
    def testUnitTypes(self):
        """Test flattening with units.

        The flattening code should not do unit conversion,
        but should leave that up to the LabRAD manager to handle.
        Basically, for purposes of flattening, a unit is a unit.
        """
        tests = [
            (Value(5.0, 'ft'), ['v[m]'], 'v[ft]'),

            # real value array
            (U.ValueArray([1, 2, 3], ''), [], '*v[]'),
            (U.ValueArray([1, 2, 3], 'm'), ['*v[m]'], '*v[m]'),

            # complex value array
            (U.ValueArray([1j, 2j, 3j], ''), [], '*c[]'),
            (U.ValueArray([1j, 2j, 3j], 'm'), [], '*c[m]')
        ]
        for data, hints, tag in tests:
            self.assertEqual(T.flatten(data, hints)[1], T.parseTypeTag(tag))

        # we disallow flattening a float to a value with units,
        # as this is a major source of bugs
        try:
            T.flatten(5.0, 'v[m]')
        except Exception:
            pass
        else:
            raise Exception('Cannot flatten float to value with units')
Beispiel #2
0
    def testTypeConversions(self):
        m = units.Unit('m')
        V = units.Unit('V')
        GHz = units.Unit('GHz')
        x1 = 1.0 * m
        x2 = 5j * V
        a = np.arange(10) * 1.0
        va = units.ValueArray(np.arange(10) * 1.0, 'GHz')

        # Unit times number
        self.assertIsInstance(1.0 * m, units.Value)
        self.assertIsInstance(1 * m, units.Value)
        self.assertIsInstance(m * 1.0, units.Value)
        self.assertIsInstance(m * 1, units.Value)

        # Value times value or number
        self.assertIsInstance(x1 * x1, units.Value)
        self.assertIsInstance(x1 * 5, units.Value)
        self.assertIsInstance(0 * x1, units.Value)

        # Unit times complex
        self.assertIsInstance((1 + 1j) * V, units.Complex)
        self.assertIsInstance(V * (1 + 1j), units.Complex)

        # Value times Complex/complex
        self.assertIsInstance(x1 * 1j, units.Complex)
        self.assertIsInstance(1j * x1, units.Complex)
        self.assertIsInstance(x2 * x1, units.Complex)
        self.assertIsInstance(x1 * x2, units.Complex)

        # Unit/Value/ValueArray times array
        self.assertIsInstance(x1 * a, units.ValueArray)
        self.assertIsInstance(x2 * a, units.ValueArray)
        self.assertIsInstance(GHz * a, units.ValueArray)
        self.assertIsInstance(va * a, units.ValueArray)

        # Unit/Value/ValueArray times ValueArray
        self.assertIsInstance(x1 * va, units.ValueArray)
        self.assertIsInstance(x2 * va, units.ValueArray)
        self.assertIsInstance(GHz * va, units.ValueArray)
        self.assertIsInstance(va * va, units.ValueArray)

        # array times ?
        self.assertIsInstance(a * x1, units.ValueArray)
        self.assertIsInstance(a * x2, units.ValueArray)
        self.assertIsInstance(a * GHz, units.ValueArray)
        self.assertIsInstance(a * va, units.ValueArray)

        # ValueArray times ?
        self.assertIsInstance(va * x1, units.ValueArray)
        self.assertIsInstance(va * x2, units.ValueArray)
        self.assertIsInstance(va * GHz, units.ValueArray)
        self.assertIsInstance(va * a, units.ValueArray)
Beispiel #3
0
 def testFailedFlattening(self):
     """
     Trying to flatten data to an incompatible type should raise an error.
     """
     cases = [
         # Simple cases
         (1, ['s', 'v[Hz]']),
         ('X', ['i', 'v', 'w']),
         (5.0, ['s', 'b', 't', 'w', 'i', 'v[Hz]']),
         # Value
         (5.0, 'v[Hz]'),
         (Value(4, 'm'), 'v[]'),
         (Value(3, 's'), ['v[Hz]', 'i', 'w']),
         # ndarray
         (np.array([1, 2, 3], dtype='int32'), '*v[Hz]'),
         (np.array([1.0, 2.4]), ['*i', '*w']),
         # ValueArray
         (U.ValueArray([1, 2, 3], 'm'), '*v[s]'),
         (U.ValueArray([1, 2], 'm'), '*v[]')
     ]
     for data, targetTag in cases:
         self.assertRaises(T.FlatteningError, T.flatten, data, targetTag)
Beispiel #4
0
    def _unflatten_as_array(self, s, endianness, elem, dims, size):
        """Unflatten to numpy array."""
        def make(t, width):
            a = np.fromstring(s.get(size*width), dtype=np.dtype(t))
            if endianness != SYSTEM_BYTE_ORDER:
                a.byteswap(True) # inplace
            return a

        if elem == TBool(): a = make('bool', 1)
        elif elem == TInt(): a = make('i4', 4)
        elif elem == TUInt(): a = make('u4', 4)
        elif elem <= TValue(): a = make('f8', 8)
        elif elem <= TComplex(): a = make('c16', 16)
        else:
            raise TypeError("Cannot make numpy array with %s"%(elem,))
        a.shape = dims + a.shape[1:] # handle clusters as elements
        if elem <= TValue() or elem <= TComplex():
            if elem.unit is not None and elem.unit != '':
                a = U.ValueArray(a, elem.unit)
            else:
                a = U.DimensionlessArray(a)
        return a
Beispiel #5
0
    def testDefaultFlatAndBack(self):
        """
        Test roundtrip python->LabRAD->python conversion.

        No type requirements are given in these tests. In other words, we allow
        pylabrad to choose a default type for flattening.

        In this test, we expect A == unflatten(*flatten(A)). In other words,
        we expect the default type chosen for each object to unflatten as
        an object equal to the one originally flattened.
        """
        tests = [
            # simple types
            None,
            True,
            False,
            1,
            -1,
            2,
            -2,
            0x7FFFFFFF,
            -0x80000000,
            1L,
            2L,
            3L,
            4L,
            0L,
            0xFFFFFFFFL,
            '',
            'a',
            '\x00\x01\x02\x03',
            datetime.now(),

            # values
            5.0,
            Value(6, ''),
            Value(7, 'ms'),
            8 + 0j,
            Complex(9 + 0j, ''),
            Complex(10 + 0j, 'GHz'),

            # ValueArray and ndarray
            # These types should be invariant under flattening followed by
            # unflattening. Note, however, that since eg. [1, 2, 3] will
            # unflatten as ndarray with dtype=int32, we do not put lists
            # in this test.
            U.ValueArray([1, 2, 3], 'm'),
            U.ValueArray([1j, 2j, 3j], 's'),
            np.array([1, 3, 4], dtype='int32'),
            np.array([1.1, 2.2, 3.3]),

            # clusters
            (1, True, 'a'),
            ((1, 2), ('a', False)),

            # lists
            [],
            #[1, 2, 3, 4],
            #[1L, 2L, 3L, 4L],
            [[]],
            [['a', 'bb', 'ccc'], ['dddd', 'eeeee', 'ffffff']],

            # more complex stuff
            [(1L, 'a'), (2L, 'b')],
        ]
        for data_in in tests:
            data_out = T.unflatten(*T.flatten(data_in))
            if isinstance(data_in, U.ValueArray):
                self.assertTrue(data_in.allclose(data_out))
            elif isinstance(data_in, np.ndarray):
                np.testing.assert_array_equal(data_out, data_in)
            else:
                self.assertEqual(data_in, data_out)
Beispiel #6
0
 def testNumpyArrayScalar(self):
     with self.assertRaises(TypeError):
         T.flatten(np.array(5))
     with self.assertRaises(TypeError):
         T.flatten(U.ValueArray(np.array(5), 'ns'))