def setup_model(p): ladder = LadderAE(p) # Setup inputs input_type = TensorType('float32', [False] * (len(p.encoder_layers[0]) + 1)) x_only = input_type('features_unlabeled') if debug: x_only.tag.test_value = numpy.random.normal( size=(p.batch_size, ) + p.encoder_layers[0]).astype(floatX) x = input_type('features_labeled') if debug: x.tag.test_value = numpy.random.normal( size=(p.batch_size, ) + p.encoder_layers[0]).astype(floatX) y = theano.tensor.lvector('targets_labeled') if debug: y.tag.test_value = numpy.random.randint(1, int(p.encoder_layers[-1]) + 1, (p.batch_size)) ladder.apply(x, y, x_only) # Load parameters if requested if p.get('load_from'): with open(p.load_from + '/trained_params.npz') as f: loaded = numpy.load(f) cg = ComputationGraph([ladder.costs.total]) current_params = VariableFilter(roles=[PARAMETER])(cg.variables) logger.info('Loading parameters: %s' % ', '.join(loaded.keys())) for param in current_params: assert param.get_value().shape == loaded[param.name].shape param.set_value(loaded[param.name]) return ladder
def setup_model(p): ladder = LadderAE(p) # Setup inputs input_type = TensorType('float32', [False] * (len(p.encoder_layers[0]) + 1)) x_only = input_type('features_unlabeled') if debug: x_only.tag.test_value = numpy.random.normal(size=(p.batch_size,)+p.encoder_layers[0]).astype(floatX) x = input_type('features_labeled') if debug: x.tag.test_value = numpy.random.normal(size=(p.batch_size,)+p.encoder_layers[0]).astype(floatX) y = theano.tensor.lvector('targets_labeled') if debug: y.tag.test_value = numpy.random.randint(1,int(p.encoder_layers[-1])+1,(p.batch_size)) ladder.apply(x, y, x_only) # Load parameters if requested if p.get('load_from'): with open(p.load_from + '/trained_params.npz') as f: loaded = numpy.load(f) cg = ComputationGraph([ladder.costs.total]) current_params = VariableFilter(roles=[PARAMETER])(cg.variables) logger.info('Loading parameters: %s' % ', '.join(loaded.keys())) for param in current_params: assert param.get_value().shape == loaded[param.name].shape param.set_value(loaded[param.name]) return ladder
def setup_model(p): ladder = LadderAE(p) # Setup inputs input_type = TensorType("float32", [False] * (len(p.encoder_layers[0]) + 1)) x_only = input_type("features_unlabeled") x = input_type("features_labeled") y = theano.tensor.lvector("targets_labeled") ladder.apply(x, y, x_only) # Load parameters if requested if p.get("load_from"): trained_params = ojoin(p.load_from, "trained_params_best.npz") # trained_params = ojoin(p.load_from, 'trained_params_best.npz') # if not file_exists(trained_params): # trained_params = ojoin(p.load_from, 'trained_params.npz') with open(trained_params) as f: loaded = numpy.load(f) cg = ComputationGraph([ladder.costs.total]) current_params = VariableFilter(roles=[PARAMETER])(cg.variables) logger.info("Loading parameters: %s" % ", ".join(loaded.keys())) for param in current_params: assert param.get_value().shape == loaded[param.name].shape param.set_value(loaded[param.name]) return ladder
def setup_model(p): ladder = LadderAE(p) # Setup inputs input_type = TensorType('float32', [False] * (len(p.encoder_layers[0]) + 1)) x_only = input_type('features_unlabeled') x = input_type('features_labeled') y = theano.tensor.lvector('targets_labeled') ladder.apply(x, y, x_only) # Load parameters if requested if p.get('load_from'): trained_params = ojoin(p.load_from, 'trained_params_best.npz') # trained_params = ojoin(p.load_from, 'trained_params_best.npz') # if not file_exists(trained_params): # trained_params = ojoin(p.load_from, 'trained_params.npz') with open(trained_params) as f: loaded = numpy.load(f) cg = ComputationGraph([ladder.costs.total]) current_params = VariableFilter(roles=[PARAMETER])(cg.variables) logger.info('Loading parameters: %s' % ', '.join(loaded.keys())) for param in current_params: assert param.get_value().shape == loaded[param.name].shape param.set_value(loaded[param.name]) return ladder
def setup_model(): ladder = LadderAE() input_type = TensorType('float32', [False, False]) x_lb = input_type('features_labeled') x_un = input_type('features_unlabeled') y = theano.tensor.lvector('targets_labeled') ladder.apply(x_lb, x_un, y) return ladder
def setup_model(p): ladder = LadderAE(p) # Setup inputs input_type = TensorType('float32', [False] * (len(p.encoder_layers[0]) + 1)) x_only = input_type('features_unlabeled') x = input_type('features_labeled') y = theano.tensor.lvector('targets_labeled') ladder.apply(x, y, x_only) # Load parameters if requested if p.get('load_from'): with numpy.load(p.load_from + '/trained_params.npz') as loaded: cg = ComputationGraph([ladder.costs.total]) current_params = VariableFilter(roles=[PARAMETER])(cg.variables) logger.info('Loading parameters: %s' % ', '.join(loaded.keys())) for param in current_params: assert param.get_value().shape == loaded[param.name].shape param.set_value(loaded[param.name]) return ladder