def Trmv_ln_unb_var1(L, x): """ Trmv_ln_unb_var1(matrix, vector) Computes y = L * x using DOT products. L is the lower triangular matrix. Traverses matrix L from BOTTOM-RIGHT to TOP-LEFT, vector x from BOTTOM to TOP. """ LTL, LTR, \ LBL, LBR = flame.part_2x2(L, \ 0, 0, 'BR') xT, \ xB = flame.part_2x1(x, \ 0, 'BOTTOM') while LBR.shape[0] < L.shape[0]: L00, l01, L02, \ l10t, lambda11, l12t, \ L20, l21, L22 = flame.repart_2x2_to_3x3(LTL, LTR, \ LBL, LBR, \ 1, 1, 'TL') x0, \ chi1, \ x2 = flame.repart_2x1_to_3x1(xT, \ xB, \ 1, 'TOP') laff.scal( lambda11, chi1 ) laff.dots( l10t, x0, chi1 ) LTL, LTR, \ LBL, LBR = flame.cont_with_3x3_to_2x2(L00, l01, L02, \ l10t, lambda11, l12t, \ L20, l21, L22, \ 'BR') xT, \ xB = flame.cont_with_3x1_to_2x1(x0, \ chi1, \ x2, \ 'BOTTOM') flame.merge_2x1(xT, \ xB, x)
def Trmv_un_unb_var1(U, x): """ Trmv_un_unb_var1(matrix, vector) Computes y = U * x using DOT products. U is the upper triangular matrix. Traverses matrix U from TOP-LEFT to BOTTOM-RIGHT, vector x from TOP to BOTTOM. """ UTL, UTR, \ UBL, UBR = flame.part_2x2(U, \ 0, 0, 'TL') xT, \ xB = flame.part_2x1(x, \ 0, 'TOP') while UTL.shape[0] < U.shape[0]: U00, u01, U02, \ u10t, upsilon11, u12t, \ U20, u21, U22 = flame.repart_2x2_to_3x3(UTL, UTR, \ UBL, UBR, \ 1, 1, 'BR') x0, \ chi1, \ x2 = flame.repart_2x1_to_3x1(xT, \ xB, \ 1, 'BOTTOM') laff.scal(upsilon11, chi1) laff.dots(u12t, x2, chi1) UTL, UTR, \ UBL, UBR = flame.cont_with_3x3_to_2x2(U00, u01, U02, \ u10t, upsilon11, u12t, \ U20, u21, U22, \ 'TL') xT, \ xB = flame.cont_with_3x1_to_2x1(x0, \ chi1, \ x2, \ 'TOP') flame.merge_2x1(xT, \ xB, x)
def Trmv_un_unb_var1(U, x): """ Trmv_un_unb_var1(matrix, vector) Computes y = U * x using DOT products. U is the upper triangular matrix. Traverses matrix U from TOP-LEFT to BOTTOM-RIGHT, vector x from TOP to BOTTOM. """ UTL, UTR, \ UBL, UBR = flame.part_2x2(U, \ 0, 0, 'TL') xT, \ xB = flame.part_2x1(x, \ 0, 'TOP') while UTL.shape[0] < U.shape[0]: U00, u01, U02, \ u10t, upsilon11, u12t, \ U20, u21, U22 = flame.repart_2x2_to_3x3(UTL, UTR, \ UBL, UBR, \ 1, 1, 'BR') x0, \ chi1, \ x2 = flame.repart_2x1_to_3x1(xT, \ xB, \ 1, 'BOTTOM') laff.scal( upsilon11, chi1 ) laff.dots( u12t, x2, chi1 ) UTL, UTR, \ UBL, UBR = flame.cont_with_3x3_to_2x2(U00, u01, U02, \ u10t, upsilon11, u12t, \ U20, u21, U22, \ 'TL') xT, \ xB = flame.cont_with_3x1_to_2x1(x0, \ chi1, \ x2, \ 'TOP') flame.merge_2x1(xT, \ xB, x)
def Mvmult_n_unb_var1(A, x, y): """ Mvmult_n_unb_var1(matrix, vector, vector) Compuyes y = A * x + y using DOT products. Traverses matrix A from TOP to BOTTOM, vector y from TOP to BOTTOM. """ AT, \ AB = flame.part_2x1(A, \ 0, 'TOP') yT, \ yB = flame.part_2x1(y, \ 0, 'TOP') while AT.shape[0] < A.shape[0]: A0, \ a1t, \ A2 = flame.repart_2x1_to_3x1(AT, \ AB, \ 1, 'BOTTOM') y0, \ psi1, \ y2 = flame.repart_2x1_to_3x1(yT, \ yB, \ 1, 'BOTTOM') laff.dots( a1t, x, psi1 ) AT, \ AB = flame.cont_with_3x1_to_2x1(A0, \ a1t, \ A2, \ 'TOP') yT, \ yB = flame.cont_with_3x1_to_2x1(y0, \ psi1, \ y2, \ 'TOP') flame.merge_2x1(yT, \ yB, y)
def Mvmult_n_unb_var1(A, x, y): """ Mvmult_n_unb_var1(matrix, vector, vector) Compuyes y = A * x + y using DOT products. Traverses matrix A from TOP to BOTTOM, vector y from TOP to BOTTOM. """ AT, \ AB = flame.part_2x1(A, \ 0, 'TOP') yT, \ yB = flame.part_2x1(y, \ 0, 'TOP') while AT.shape[0] < A.shape[0]: A0, \ a1t, \ A2 = flame.repart_2x1_to_3x1(AT, \ AB, \ 1, 'BOTTOM') y0, \ psi1, \ y2 = flame.repart_2x1_to_3x1(yT, \ yB, \ 1, 'BOTTOM') laff.dots(a1t, x, psi1) AT, \ AB = flame.cont_with_3x1_to_2x1(A0, \ a1t, \ A2, \ 'TOP') yT, \ yB = flame.cont_with_3x1_to_2x1(y0, \ psi1, \ y2, \ 'TOP') flame.merge_2x1(yT, \ yB, y)
def Utrsv_notranspose_nonunit(U, b): UTL, UTR, \ UBL, UBR = flame.part_2x2(U, \ 0, 0, 'BR') bT, \ bB = flame.part_2x1(b, \ 0, 'BOTTOM') while UBR.shape[0] < U.shape[0]: U00, u01, U02, \ u10t, upsilon11, u12t, \ U20, u21, U22 = flame.repart_2x2_to_3x3(UTL, UTR, \ UBL, UBR, \ 1, 1, 'TL') b0, \ beta1, \ b2 = flame.repart_2x1_to_3x1(bT, \ bB, \ 1, 'TOP') #------------------------------------------------------------# laff.dots( -u12t, b2, beta1 ) laff.scal( 1/upsilon11, beta1 ) #------------------------------------------------------------# UTL, UTR, \ UBL, UBR = flame.cont_with_3x3_to_2x2(U00, u01, U02, \ u10t, upsilon11, u12t, \ U20, u21, U22, \ 'BR') bT, \ bB = flame.cont_with_3x1_to_2x1(b0, \ beta1, \ b2, \ 'BOTTOM') flame.merge_2x1(bT, \ bB, b)
def Utrsv_notranspose_nonunit(U, b): UTL, UTR, \ UBL, UBR = flame.part_2x2(U, \ 0, 0, 'BR') bT, \ bB = flame.part_2x1(b, \ 0, 'BOTTOM') while UBR.shape[0] < U.shape[0]: U00, u01, U02, \ u10t, upsilon11, u12t, \ U20, u21, U22 = flame.repart_2x2_to_3x3(UTL, UTR, \ UBL, UBR, \ 1, 1, 'TL') b0, \ beta1, \ b2 = flame.repart_2x1_to_3x1(bT, \ bB, \ 1, 'TOP') #------------------------------------------------------------# laff.dots(-u12t, b2, beta1) laff.scal(1 / upsilon11, beta1) #------------------------------------------------------------# UTL, UTR, \ UBL, UBR = flame.cont_with_3x3_to_2x2(U00, u01, U02, \ u10t, upsilon11, u12t, \ U20, u21, U22, \ 'BR') bT, \ bB = flame.cont_with_3x1_to_2x1(b0, \ beta1, \ b2, \ 'BOTTOM') flame.merge_2x1(bT, \ bB, b)
def trsv_ltu(L, B): LTL, LTR, \ LBL, LBR = flame.part_2x2(L, \ 0, 0, 'TL') BT, \ BB = flame.part_2x1(B, \ 0, 'TOP') while LTL.shape[0] < L.shape[0]: L00, l01, L02, \ l10t, lambda11, l12t, \ L20, l21, L22 = flame.repart_2x2_to_3x3(LTL, LTR, \ LBL, LBR, \ 1, 1, 'BR') B0, \ b1t, \ B2 = flame.repart_2x1_to_3x1(BT, \ BB, \ 1, 'BOTTOM') #------------------------------------------------------------# dots( -l21, b2, beta1 ) scal( 1/lambda11, beta1 ) #------------------------------------------------------------# LTL, LTR, \ LBL, LBR = flame.cont_with_3x3_to_2x2(L00, l01, L02, \ l10t, lambda11, l12t, \ L20, l21, L22, \ 'TL') BT, \ BB = flame.cont_with_3x1_to_2x1(B0, \ b1t, \ B2, \ 'TOP') flame.merge_2x1(BT, \ BB, B)
def Mvmult_t_unb_var1(A, x, y): """ Mvmult_t_unb_var1(matrix, vector, vector) Computes y = A' * x + y using DOT products. Traverses matrix A from LEFT to RIGHT, vector y from TOP to BOTTOM. """ AL, AR = flame.part_1x2(A, \ 0, 'LEFT') yT, \ yB = flame.part_2x1(y, \ 0, 'TOP') while AL.shape[1] < A.shape[1]: A0, a1, A2 = flame.repart_1x2_to_1x3(AL, AR, \ 1, 'RIGHT') y0, \ psi1, \ y2 = flame.repart_2x1_to_3x1(yT, \ yB, \ 1, 'BOTTOM') laff.dots( a1, x, psi1 ) AL, AR = flame.cont_with_1x3_to_1x2(A0, a1, A2, \ 'LEFT') yT, \ yB = flame.cont_with_3x1_to_2x1(y0, \ psi1, \ y2, \ 'TOP') flame.merge_2x1(yT, \ yB, y)
def chol_unb(A): ATL, ATR, \ ABL, ABR = flame.part_2x2(A, \ 0, 0, 'TL') while ATL.shape[0] < A.shape[0]: A00, a01, A02, \ a10t, alpha11, a12t, \ A20, a21, A22 = flame.repart_2x2_to_3x3(ATL, ATR, \ ABL, ABR, \ 1, 1, 'BR') #------------------------------------------------------------# # alpha11[0,0] = np.sqrt( alpha11[0,0] ) # laff.invscal( alpha11, a21 ) # laff.ger( -1, a21, a21, A22 ) #Not tril # laff.dots( a10t, a10t, alpha11 ) # alpha11[0,0] = np.sqrt( alpha11[0,0] ) # a21 -= A20 * np.transpose(a10t) #Not laff calls # laff.invscal( alpha11, a21 ) laff.trsv( 'Lower triangular', 'Nonunit diagonal', 'No transpose', A00, a10t ) laff.dots( a10t, a10t, alpha11 ) alpha11[0,0] = np.sqrt( alpha11[0,0] ) #------------------------------------------------------------# ATL, ATR, \ ABL, ABR = flame.cont_with_3x3_to_2x2(A00, a01, A02, \ a10t, alpha11, a12t, \ A20, a21, A22, \ 'TL') flame.merge_2x2(ATL, ATR, \ ABL, ABR, A)
def Tmvmult_ln_unb_var1(L, x, y): """ Tmvmult_ln_unb_var1(matrix, vector, vector) Computes y = L * x + y using DOT products. L is the lower triangular matrix. Traverses matrix L from TOP-LEFT to BOTTOM-RIGHT, vector x from TOP to BOTTOM, vector y from TOP to BOTTOM. """ LTL, LTR, \ LBL, LBR = flame.part_2x2(L, \ 0, 0, 'TL') xT, \ xB = flame.part_2x1(x, \ 0, 'TOP') yT, \ yB = flame.part_2x1(y, \ 0, 'TOP') while LTL.shape[0] < L.shape[0]: L00, l01, L02, \ l10t, lambda11, l12t, \ L20, l21, L22 = flame.repart_2x2_to_3x3(LTL, LTR, \ LBL, LBR, \ 1, 1, 'BR') x0, \ chi1, \ x2 = flame.repart_2x1_to_3x1(xT, \ xB, \ 1, 'BOTTOM') y0, \ psi1, \ y2 = flame.repart_2x1_to_3x1(yT, \ yB, \ 1, 'BOTTOM') laff.dots(l10t, x0, psi1) laff.dots(lambda11, chi1, psi1) LTL, LTR, \ LBL, LBR = flame.cont_with_3x3_to_2x2(L00, l01, L02, \ l10t, lambda11, l12t, \ L20, l21, L22, \ 'TL') xT, \ xB = flame.cont_with_3x1_to_2x1(x0, \ chi1, \ x2, \ 'TOP') yT, \ yB = flame.cont_with_3x1_to_2x1(y0, \ psi1, \ y2, \ 'TOP') flame.merge_2x2(LTL, LTR, \ LBL, LBR, L) flame.merge_2x1(xT, \ xB, x) flame.merge_2x1(yT, \ yB, y)
def Tmvmult_lt_unb_var1(L, x, y): """ Tmvmult_lt_unb_var1(matrix, vector, vector) Computes y = L' * x + y using DOT products. L is the lower triangular matrix. Traverses matrix L from TOP-LEFT to BOTTOM-RIGHT, vector x from TOP to BOTTOM, vector y from TOP to BOTTOM. """ LTL, LTR, \ LBL, LBR = flame.part_2x2(L, \ 0, 0, 'TL') xT, \ xB = flame.part_2x1(x, \ 0, 'TOP') yT, \ yB = flame.part_2x1(y, \ 0, 'TOP') while LTL.shape[0] < L.shape[0]: L00, l01, L02, \ l10t, lambda11, l12t, \ L20, l21, L22 = flame.repart_2x2_to_3x3(LTL, LTR, \ LBL, LBR, \ 1, 1, 'BR') x0, \ chi1, \ x2 = flame.repart_2x1_to_3x1(xT, \ xB, \ 1, 'BOTTOM') y0, \ psi1, \ y2 = flame.repart_2x1_to_3x1(yT, \ yB, \ 1, 'BOTTOM') laff.dots( l21, x2, psi1 ) laff.dots( lambda11, chi1, psi1 ) LTL, LTR, \ LBL, LBR = flame.cont_with_3x3_to_2x2(L00, l01, L02, \ l10t, lambda11, l12t, \ L20, l21, L22, \ 'TL') xT, \ xB = flame.cont_with_3x1_to_2x1(x0, \ chi1, \ x2, \ 'TOP') yT, \ yB = flame.cont_with_3x1_to_2x1(y0, \ psi1, \ y2, \ 'TOP') flame.merge_2x1(yT, \ yB, y)
def Symv_u_unb_var1(A, x, y): """ Symv_u_unb_var1(matrix, vector, vector) Computes y = A * x + y using DOT products. A is a symmetric matrix. Traverses matrix A from TOP-LEFT to BOTTOM-RIGHT, vector x from TOP to BOTTOM, vector y from TOP to BOTTOM. """ ATL, ATR, \ ABL, ABR = flame.part_2x2(A, \ 0, 0, 'TL') xT, \ xB = flame.part_2x1(x, \ 0, 'TOP') yT, \ yB = flame.part_2x1(y, \ 0, 'TOP') while ATL.shape[0] < A.shape[0]: A00, a01, A02, \ a10t, alpha11, a12t, \ A20, a21, A22 = flame.repart_2x2_to_3x3(ATL, ATR, \ ABL, ABR, \ 1, 1, 'BR') x0, \ chi1, \ x2 = flame.repart_2x1_to_3x1(xT, \ xB, \ 1, 'BOTTOM') y0, \ psi1, \ y2 = flame.repart_2x1_to_3x1(yT, \ yB, \ 1, 'BOTTOM') laff.dots( a01, x0, psi1 ) laff.dots( alpha11, chi1, psi1 ) laff.dots( a12t, x2, psi1 ) ATL, ATR, \ ABL, ABR = flame.cont_with_3x3_to_2x2(A00, a01, A02, \ a10t, alpha11, a12t, \ A20, a21, A22, \ 'TL') xT, \ xB = flame.cont_with_3x1_to_2x1(x0, \ chi1, \ x2, \ 'TOP') yT, \ yB = flame.cont_with_3x1_to_2x1(y0, \ psi1, \ y2, \ 'TOP') flame.merge_2x1(yT, \ yB, y)
def Tmvmult_ut_unb_var1(U, x, y): """ Tmvmult_ut_unb_var1(matrix, vector, vector) Computes y = U' * x + y using DOT products. Traverses matrix U from TOP-LEFT to BOTTOM-RIGHT, vector x from TOP to BOTTOM, vector y from TOP to BOTTOM. """ UTL, UTR, \ UBL, UBR = flame.part_2x2(U, \ 0, 0, 'TL') xT, \ xB = flame.part_2x1(x, \ 0, 'TOP') yT, \ yB = flame.part_2x1(y, \ 0, 'TOP') while UTL.shape[0] < U.shape[0]: U00, u01, U02, \ u10t, upsilon11, u12t, \ U20, u21, U22 = flame.repart_2x2_to_3x3(UTL, UTR, \ UBL, UBR, \ 1, 1, 'BR') x0, \ chi1, \ x2 = flame.repart_2x1_to_3x1(xT, \ xB, \ 1, 'BOTTOM') y0, \ psi1, \ y2 = flame.repart_2x1_to_3x1(yT, \ yB, \ 1, 'BOTTOM') laff.dots( upsilon11, chi1, psi1 ) laff.dots( u01, x0, psi1 ) UTL, UTR, \ UBL, UBR = flame.cont_with_3x3_to_2x2(U00, u01, U02, \ u10t, upsilon11, u12t, \ U20, u21, U22, \ 'TL') xT, \ xB = flame.cont_with_3x1_to_2x1(x0, \ chi1, \ x2, \ 'TOP') yT, \ yB = flame.cont_with_3x1_to_2x1(y0, \ psi1, \ y2, \ 'TOP') flame.merge_2x1(yT, \ yB, y)
def Symv_u_unb_var1(A, x, y): """ Symv_u_unb_var1(matrix, vector, vector) Computes y = A * x + y using DOT products. A is a symmetric matrix. Traverses matrix A from TOP-LEFT to BOTTOM-RIGHT, vector x from TOP to BOTTOM, vector y from TOP to BOTTOM. """ ATL, ATR, \ ABL, ABR = flame.part_2x2(A, \ 0, 0, 'TL') xT, \ xB = flame.part_2x1(x, \ 0, 'TOP') yT, \ yB = flame.part_2x1(y, \ 0, 'TOP') while ATL.shape[0] < A.shape[0]: A00, a01, A02, \ a10t, alpha11, a12t, \ A20, a21, A22 = flame.repart_2x2_to_3x3(ATL, ATR, \ ABL, ABR, \ 1, 1, 'BR') x0, \ chi1, \ x2 = flame.repart_2x1_to_3x1(xT, \ xB, \ 1, 'BOTTOM') y0, \ psi1, \ y2 = flame.repart_2x1_to_3x1(yT, \ yB, \ 1, 'BOTTOM') laff.dots(a01, x0, psi1) laff.dots(alpha11, chi1, psi1) laff.dots(a12t, x2, psi1) ATL, ATR, \ ABL, ABR = flame.cont_with_3x3_to_2x2(A00, a01, A02, \ a10t, alpha11, a12t, \ A20, a21, A22, \ 'TL') xT, \ xB = flame.cont_with_3x1_to_2x1(x0, \ chi1, \ x2, \ 'TOP') yT, \ yB = flame.cont_with_3x1_to_2x1(y0, \ psi1, \ y2, \ 'TOP') flame.merge_2x1(yT, \ yB, y)