Beispiel #1
0
def xas_convolve(energy, norm=None, group=None, form='lorentzian',
                   esigma=1.0, eshift=0.0, _larch=None):
    """
    convolve a normalized mu(E) spectra with a Lorentzian or Gaussian peak
    shape, degrading separation of XANES features.

    This is provided as a complement to xas_deconvolve, and to deliberately
    broaden spectra to compare with spectra measured at lower resolution.

    Arguments
    ----------
    energy:   array of x-ray energies (in eV) or XAFS data group
    norm:     array of normalized mu(E)
    group:    output group
    form:     form of deconvolution function. One of
              'lorentzian' or  'gaussian' ['lorentzian']
    esigma    energy sigma (in eV) to pass to gaussian() or lorentzian() [1.0]
    eshift    energy shift (in eV) to apply to result [0]

    Returns
    -------
    None
       The array 'conv' will be written to the output group.

    Notes
    -----
       Follows the First Argument Group convention, using group members named
       'energy' and 'norm'
    """

    energy, mu, group = parse_group_args(energy, members=('energy', 'norm'),
                                         defaults=(norm,), group=group,
                                         fcn_name='xas_convolve')
    eshift = eshift + 0.5 * esigma

    en  = remove_dups(energy)
    en  = en - en[0]
    estep = max(0.001, 0.001*int(min(en[1:]-en[:-1])*1000.0))

    npad = 1 + int(max(estep*2.01, 50*esigma)/estep)

    npts = npad  + int(max(en) / estep)

    x = np.arange(npts)*estep
    y = interp(en, mu, x, kind='cubic')

    kernel = lorentzian
    if form.lower().startswith('g'):
        kernel = gaussian

    k = kernel(x, center=0, sigma=esigma)
    ret = np.convolve(y, k, mode='full')

    out = interp(x-eshift, ret[:len(x)], en, kind='cubic')

    group = set_xafsGroup(group, _larch=_larch)
    group.conv = out / k.sum()
Beispiel #2
0
def sort_xafs(energy,
              mu=None,
              group=None,
              fix_repeats=True,
              overwrite=True,
              _larch=None):
    """sort energy, mu pair of XAFS data so that energy is monotonically increasing

    Arguments
    ---------
    energy       input energy array
    mu           input mu array
    group        output group
    fix_repeats  bool, whether to fix repeated energies
    overwrite    bool, whether to overwrite arrays [True]

    Returns
    -------
      None

    if overwrite is False, a group named 'sorted' will be created
    in the output group, with sorted energy and mu arrays

    (if the output group is None, _sys.xafsGroup will be written to)

    """
    energy, mu, group = parse_group_args(energy,
                                         members=('energy', 'mu'),
                                         defaults=(mu, ),
                                         group=group,
                                         fcn_name='sort_xafs')

    indices = np.argsort(energy)
    new_energy = energy[indices]
    new_mu = mu[indices]

    if fix_repeats:
        new_energy = remove_dups(new_energy)

    if not overwrite:
        group.sorted = Group(energy=new_energy, mu=new_mu)
    else:
        group.energy = new_energy
        group.mu = new_mu
    return
Beispiel #3
0
def sort_xafs(energy, mu=None, group=None, fix_repeats=True, overwrite=True, _larch=None):
    """sort energy, mu pair of XAFS data so that energy is monotonically increasing

    Arguments
    ---------
    energy       input energy array
    mu           input mu array
    group        output group
    fix_repeats  bool, whether to fix repeated energies
    overwrite    bool, whether to overwrite arrays [True]

    Returns
    -------
      None

    if overwrite is False, a group named 'sorted' will be created
    in the output group, with sorted energy and mu arrays

    (if the output group is None, _sys.xafsGroup will be written to)

    """
    energy, mu, group = parse_group_args(energy, members=('energy', 'mu'),
                                         defaults=(mu,), group=group,
                                        fcn_name='sort_xafs')

    indices = np.argsort(energy)
    new_energy  = energy[indices]
    new_mu  = mu[indices]

    if fix_repeats:
        new_energy = remove_dups(new_energy)

    if not overwrite:
        group.sorted = Group(energy=new_energy, mu=new_mu)
    else:
        group.energy = new_energy
        group.mu = mu
    return
Beispiel #4
0
def preedge(energy, mu, e0=None, step=None,
            nnorm=None, nvict=0, pre1=None, pre2=-50,
            norm1=100, norm2=None):
    """pre edge subtraction, normalization for XAFS (straight python)

    This performs a number of steps:
       1. determine E0 (if not supplied) from max of deriv(mu)
       2. fit a line of polymonial to the region below the edge
       3. fit a polymonial to the region above the edge
       4. extrapolae the two curves to E0 to determine the edge jump

    Arguments
    ----------
    energy:  array of x-ray energies, in eV
    mu:      array of mu(E)
    e0:      edge energy, in eV.  If None, it will be determined here.
    step:    edge jump.  If None, it will be determined here.
    pre1:    low E range (relative to E0) for pre-edge fit
    pre2:    high E range (relative to E0) for pre-edge fit
    nvict:   energy exponent to use for pre-edg fit.  See Note
    norm1:   low E range (relative to E0) for post-edge fit
    norm2:   high E range (relative to E0) for post-edge fit
    nnorm:   degree of polynomial (ie, nnorm+1 coefficients will be found) for
             post-edge normalization curve. Default=None -- see note.
    Returns
    -------
      dictionary with elements (among others)
          e0          energy origin in eV
          edge_step   edge step
          norm        normalized mu(E)
          pre_edge    determined pre-edge curve
          post_edge   determined post-edge, normalization curve

    Notes
    -----
    1  nvict gives an exponent to the energy term for the fits to the pre-edge
       and the post-edge region.  For the pre-edge, a line (m * energy + b) is
       fit to mu(energy)*energy**nvict over the pre-edge region,
       energy=[e0+pre1, e0+pre2].  For the post-edge, a polynomial of order
       nnorm will be fit to mu(energy)*energy**nvict of the post-edge region
       energy=[e0+norm1, e0+norm2].
    2  nnorm will default to 2 in norm2-norm1>300, to 1 if 100>norm2-norm1>300, and
       to 0 in norm2-norm1<100.

    """
    energy = remove_dups(energy)
    if e0 is None or e0 < energy[1] or e0 > energy[-2]:
        e0 = _finde0(energy, mu)

    ie0 = index_nearest(energy, e0)
    e0 = energy[ie0]

    pre1_input = pre1
    norm2_input = norm2

    if pre1 is None:  pre1  = min(energy) - e0
    if norm2 is None: norm2 = max(energy) - e0
    if norm2 < 0:     norm2 = max(energy) - e0 - norm2
    pre1  = max(pre1,  (min(energy) - e0))
    norm2 = min(norm2, (max(energy) - e0))

    if pre1 > pre2:
        pre1, pre2 = pre2, pre1
    if norm1 > norm2:
        norm1, norm2 = norm2, norm1

    p1 = index_of(energy, pre1+e0)
    p2 = index_nearest(energy, pre2+e0)
    if p2-p1 < 2:
        p2 = min(len(energy), p1 + 2)

    omu  = mu*energy**nvict
    ex, mx = remove_nans2(energy[p1:p2], omu[p1:p2])
    precoefs = polyfit(ex, mx, 1)
    pre_edge = (precoefs[0] * energy + precoefs[1]) * energy**(-nvict)
    # normalization
    p1 = index_of(energy, norm1+e0)
    p2 = index_nearest(energy, norm2+e0)
    if p2-p1 < 2:
        p2 = min(len(energy), p1 + 2)

    if nnorm is None:
        nnorm = 0
        if norm2-norm1 > 100:
            nnorm = 1
        if norm2-norm1 > 400:
            nnorm = 2
    nnorm = max(min(nnorm, MAX_NNORM), 0)

    presub = (mu-pre_edge)[p1:p2]
    coefs = polyfit(energy[p1:p2], presub, nnorm)
    post_edge = 1.0*pre_edge
    norm_coefs = []
    for n, c in enumerate(reversed(list(coefs))):
        post_edge += c * energy**(n)
        norm_coefs.append(c)
    edge_step = step
    if edge_step is None:
        edge_step = post_edge[ie0] - pre_edge[ie0]

    norm = (mu - pre_edge)/edge_step
    return {'e0': e0, 'edge_step': edge_step, 'norm': norm,
            'pre_edge': pre_edge, 'post_edge': post_edge,
            'norm_coefs': norm_coefs, 'nvict': nvict,
            'nnorm': nnorm, 'norm1': norm1, 'norm2': norm2,
            'pre1': pre1, 'pre2': pre2, 'precoefs': precoefs,
            'norm2_input': norm2_input,  'pre1_input': pre1_input}
Beispiel #5
0
def xas_deconvolve(energy,
                   norm=None,
                   group=None,
                   form='lorentzian',
                   esigma=1.0,
                   eshift=0.0,
                   smooth=True,
                   sgwindow=None,
                   sgorder=3,
                   _larch=None):
    """XAS spectral deconvolution

    de-convolve a normalized mu(E) spectra with a peak shape, enhancing the
    intensity and separation of peaks of a XANES spectrum.

    The results can be unstable, and noisy, and should be used
    with caution!

    Arguments
    ----------
    energy:   array of x-ray energies (in eV) or XAFS data group
    norm:     array of normalized mu(E)
    group:    output group
    form:     functional form of deconvolution function. One of
              'gaussian' or 'lorentzian' [default]
    esigma    energy sigma to pass to gaussian() or lorentzian()
              [in eV, default=1.0]
    eshift    energy shift to apply to result. [in eV, default=0]
    smooth    whether to smooth result with savitzky_golay method [True]
    sgwindow  window size for savitzky_golay [found from data step and esigma]
    sgorder   order for savitzky_golay [3]

    Returns
    -------
    None
       The array 'deconv' will be written to the output group.

    Notes
    -----
       Support See First Argument Group convention, requiring group
       members 'energy' and 'norm'

       Smoothing with savitzky_golay() requires a window and order.  By
       default, window = int(esigma / estep) where estep is step size for
       the gridded data, approximately the finest energy step in the data.
    """
    energy, mu, group = parse_group_args(energy,
                                         members=('energy', 'norm'),
                                         defaults=(norm, ),
                                         group=group,
                                         fcn_name='xas_deconvolve')
    eshift = eshift + 0.5 * esigma

    en = remove_dups(energy)
    estep1 = int(0.1 * en[0]) * 2.e-5
    en = en - en[0]
    estep = max(estep1, 0.01 * int(min(en[1:] - en[:-1]) * 100.0))
    npts = 1 + int(max(en) / estep)
    if npts > 25000:
        npts = 25001
        estep = max(en) / 25000.0

    x = np.arange(npts) * estep
    y = interp(en, mu, x, kind='cubic')

    kernel = lorentzian
    if form.lower().startswith('g'):
        kernel = gaussian

    yext = np.concatenate((y, np.arange(len(y)) * y[-1]))

    ret, err = deconvolve(yext, kernel(x, center=0, sigma=esigma))
    nret = min(len(x), len(ret))

    ret = ret[:nret] * yext[nret - 1] / ret[nret - 1]
    if smooth:
        if sgwindow is None:
            sgwindow = int(1.0 * esigma / estep)

        sqwindow = int(sgwindow)
        if sgwindow < (sgorder + 1):
            sgwindow = sgorder + 2
        if sgwindow % 2 == 0:
            sgwindow += 1
        ret = savitzky_golay(ret, sgwindow, sgorder)

    out = interp(x + eshift, ret, en, kind='cubic')
    group = set_xafsGroup(group, _larch=_larch)
    group.deconv = out
Beispiel #6
0
def preedge(energy,
            mu,
            e0=None,
            step=None,
            nnorm=None,
            nvict=0,
            pre1=None,
            pre2=None,
            norm1=None,
            norm2=None):
    """pre edge subtraction, normalization for XAFS (straight python)

    This performs a number of steps:
       1. determine E0 (if not supplied) from max of deriv(mu)
       2. fit a line to the region below the edge
       3. fit a polymonial to the region above the edge
       4. extrapolate the two curves to E0 and take their difference
          to determine the edge jump

    Arguments
    ----------
    energy:  array of x-ray energies, in eV
    mu:      array of mu(E)
    e0:      edge energy, in eV.  If None, it will be determined here.
    step:    edge jump.  If None, it will be determined here.
    pre1:    low E range (relative to E0) for pre-edge fit
    pre2:    high E range (relative to E0) for pre-edge fit
    nvict:   energy exponent to use for pre-edg fit.  See Note
    norm1:   low E range (relative to E0) for post-edge fit
    norm2:   high E range (relative to E0) for post-edge fit
    nnorm:   degree of polynomial (ie, nnorm+1 coefficients will be found) for
             post-edge normalization curve. Default=None -- see note.
    Returns
    -------
      dictionary with elements (among others)
          e0          energy origin in eV
          edge_step   edge step
          norm        normalized mu(E)
          pre_edge    determined pre-edge curve
          post_edge   determined post-edge, normalization curve

    Notes
    -----
    1  pre_edge: a line is fit to mu(energy)*energy**nvict over the region,
       energy=[e0+pre1, e0+pre2]. pre1 and pre2 default to None, which will set
           pre1 = e0 - 2nd energy point, rounded to 5 eV
           pre2 = roughly pre1/3.0, rounded to 5 eV

    2  post-edge: a polynomial of order nnorm is fit to mu(energy)*energy**nvict
       between energy=[e0+norm1, e0+norm2]. nnorm, norm1, norm2 default to None,
       which will set:
         nnorm = 2 in norm2-norm1>350, 1 if norm2-norm1>50, or 0 if less.
         norm2 = max energy - e0, rounded to 5 eV
         norm1 = roughly min(150, norm2/3.0), rounded to 5 eV
    """
    energy = remove_dups(energy)
    if e0 is None or e0 < energy[1] or e0 > energy[-2]:
        e0 = _finde0(energy, mu)

    ie0 = index_nearest(energy, e0)
    e0 = energy[ie0]

    if pre1 is None:
        # skip first energy point, often bad
        if ie0 > 20:
            pre1 = 5.0 * round((energy[1] - e0) / 5.0)
        else:
            pre1 = 2.0 * round((energy[1] - e0) / 2.0)

    pre1 = max(pre1, (min(energy) - e0))
    if pre2 is None:
        pre2 = 5.0 * round(pre1 / 15.0)
    if pre1 > pre2:
        pre1, pre2 = pre2, pre1

    if norm2 is None:
        norm2 = 5.0 * round((max(energy) - e0) / 5.0)
    if norm2 < 0:
        norm2 = max(energy) - e0 - norm2
    norm2 = min(norm2, (max(energy) - e0))
    if norm1 is None:
        norm1 = min(150, 5.0 * round(norm2 / 15.0))
    if norm1 > norm2:
        norm1, norm2 = norm2, norm1
    if nnorm is None:
        nnorm = 2
        if norm2 - norm1 < 350: nnorm = 1
        if norm2 - norm1 < 50: nnorm = 0
    nnorm = max(min(nnorm, MAX_NNORM), 0)

    # preedge
    p1 = index_of(energy, pre1 + e0)
    p2 = index_nearest(energy, pre2 + e0)
    if p2 - p1 < 2:
        p2 = min(len(energy), p1 + 2)

    omu = mu * energy**nvict
    ex, mx = remove_nans2(energy[p1:p2], omu[p1:p2])
    precoefs = polyfit(ex, mx, 1)
    pre_edge = (precoefs[0] * energy + precoefs[1]) * energy**(-nvict)

    # normalization
    p1 = index_of(energy, norm1 + e0)
    p2 = index_nearest(energy, norm2 + e0)
    if p2 - p1 < 2:
        p2 = min(len(energy), p1 + 2)

    presub = (mu - pre_edge)[p1:p2]
    coefs = polyfit(energy[p1:p2], presub, nnorm)
    post_edge = 1.0 * pre_edge
    norm_coefs = []
    for n, c in enumerate(reversed(list(coefs))):
        post_edge += c * energy**(n)
        norm_coefs.append(c)
    edge_step = step
    if edge_step is None:
        edge_step = post_edge[ie0] - pre_edge[ie0]
    edge_step = abs(edge_step)

    norm = (mu - pre_edge) / edge_step
    return {
        'e0': e0,
        'edge_step': edge_step,
        'norm': norm,
        'pre_edge': pre_edge,
        'post_edge': post_edge,
        'norm_coefs': norm_coefs,
        'nvict': nvict,
        'nnorm': nnorm,
        'norm1': norm1,
        'norm2': norm2,
        'pre1': pre1,
        'pre2': pre2,
        'precoefs': precoefs
    }
Beispiel #7
0
def mback(energy, mu=None, group=None, z=None, edge='K', e0=None, pre1=None, pre2=-50,
          norm1=100, norm2=None, order=3, leexiang=False, tables='chantler', fit_erfc=False,
          return_f1=False, _larch=None):
    """
    Match mu(E) data for tabulated f''(E) using the MBACK algorithm and,
    optionally, the Lee & Xiang extension

    Arguments
    ----------
      energy:     array of x-ray energies, in eV.
      mu:         array of mu(E).
      group:      output group.
	  z:          atomic number of the absorber.
	  edge:       x-ray absorption edge (default 'K')
      e0:         edge energy, in eV.  If None, it will be determined here.
      pre1:       low E range (relative to e0) for pre-edge region.
      pre2:       high E range (relative to e0) for pre-edge region.
      norm1:      low E range (relative to e0) for post-edge region.
      norm2:      high E range (relative to e0) for post-edge region.
      order:      order of the legendre polynomial for normalization.
	              (default=3, min=0, max=5).
      leexiang:   boolean (default False)  to use the Lee & Xiang extension.
      tables:     tabulated scattering factors: 'chantler' (default) or 'cl' (cromer-liberman)
      fit_erfc:   boolean (default False) to fit parameters of error function.
      return_f1:  boolean (default False) to include the f1 array in the group.


    Returns
    -------
      None

    The following attributes will be written to the output group:
      group.f2:            tabulated f2(E).
      group.f1:            tabulated f1(E) (if 'return_f1' is True).
      group.fpp:           mback atched spectrum.
	  group.edge_step:     edge step of spectrum.
	  group.norm:          normalized spectrum.
      group.mback_params:  group of parameters for the minimization.

    References:
      * MBACK (Weng, Waldo, Penner-Hahn): http://dx.doi.org/10.1086/303711
      * Lee and Xiang: http://dx.doi.org/10.1088/0004-637X/702/2/970
      * Cromer-Liberman: http://dx.doi.org/10.1063/1.1674266
      * Chantler: http://dx.doi.org/10.1063/1.555974
    """
    order = max(min(order, MAXORDER), 0)

    ### implement the First Argument Group convention
    energy, mu, group = parse_group_args(energy, members=('energy', 'mu'),
                                         defaults=(mu,), group=group,
                                         fcn_name='mback')
    if len(energy.shape) > 1:
        energy = energy.squeeze()
    if len(mu.shape) > 1:
        mu = mu.squeeze()

    if _larch is not None:
        group = set_xafsGroup(group, _larch=_larch)

    energy = remove_dups(energy)
    if e0 is None or e0 < energy[1] or e0 > energy[-2]:
        e0 = find_e0(energy, mu, group=group)

    print(e0)
    ie0 = index_nearest(energy, e0)
    e0 = energy[ie0]

    pre1_input = pre1
    norm2_input = norm2

    if pre1 is None:  pre1  = min(energy) - e0
    if norm2 is None: norm2 = max(energy) - e0
    if norm2 < 0:     norm2 = max(energy) - e0 - norm2
    pre1  = max(pre1,  (min(energy) - e0))
    norm2 = min(norm2, (max(energy) - e0))

    if pre1 > pre2:
        pre1, pre2 = pre2, pre1
    if norm1 > norm2:
        norm1, norm2 = norm2, norm1

    p1 = index_of(energy, pre1+e0)
    p2 = index_nearest(energy, pre2+e0)
    n1 = index_nearest(energy, norm1+e0)
    n2 = index_of(energy, norm2+e0)
    if p2 - p1 < 2:
        p2 = min(len(energy), p1 + 2)
    if n2 - n1 < 2:
        p2 = min(len(energy), p1 + 2)

    ## theta is a boolean array indicating the
	## energy values considered for the fit.
    ## theta=1 for included values, theta=0 for excluded values.
    theta            = np.zeros_like(energy, dtype='int')
    theta[p1:(p2+1)] = 1
    theta[n1:(n2+1)] = 1

    ## weights for the pre- and post-edge regions, as defined in the MBACK paper (?)
    weight            = np.ones_like(energy, dtype=float)
    weight[p1:(p2+1)] = np.sqrt(np.sum(weight[p1:(p2+1)]))
    weight[n1:(n2+1)] = np.sqrt(np.sum(weight[n1:(n2+1)]))

	## get the f'' function from CL or Chantler
    if tables.lower() == 'chantler':
        f1 = f1_chantler(z, energy)
        f2 = f2_chantler(z, energy)
    else:
        (f1, f2) = f1f2_cl(z, energy, edge=edge)
    group.f2 = f2
    if return_f1:
        group.f1 = f1

    em = find_xray_line(z, edge)[0] # erfc centroid

    params = Parameters()
    params.add(name='s',  value=1.0,  vary=True)  # scale of data
    params.add(name='xi', value=50.0, vary=False, min=0) # width of erfc
    params.add(name='a',  value=0.0, vary=False)  # amplitude of erfc
    if fit_erfc:
        params['a'].vary  = True
        params['a'].value = 0.5
        params['xi'].vary  = True

    for i in range(order+1): # polynomial coefficients
        params.add(name='c%d' % i, value=0, vary=True)

    out = minimize(match_f2, params, method='leastsq',
                   gtol=1.e-5, ftol=1.e-5, xtol=1.e-5, epsfcn=1.e-5,
                   kws = dict(en=energy, mu=mu, f2=f2, e0=e0, em=em,
                              order=order, weight=weight, theta=theta, leexiang=leexiang))

    opars = out.params.valuesdict()
    eoff = energy - e0

    norm_function = opars['a']*erfc((energy-em)/opars['xi']) + opars['c0']
    for i in range(order):
        attr = 'c%d' % (i + 1)
        if attr in opars:
            norm_function  += opars[attr]* eoff**(i + 1)

    group.e0 = e0
    group.fpp = opars['s']*mu - norm_function
    # calculate edge step and normalization from f2 + norm_function
    pre_f2 = preedge(energy, group.f2+norm_function, e0=e0, pre1=pre1,
	         pre2=pre2, norm1=norm1, norm2=norm2, nnorm=2, nvict=0)
    group.edge_step = pre_f2['edge_step'] / opars['s']
    group.norm = (opars['s']*mu -  pre_f2['pre_edge']) / pre_f2['edge_step']
    group.mback_details = Group(params=opars, pre_f2=pre_f2,
                                f2_scaled=opars['s']*f2,
                                norm_function=norm_function)
Beispiel #8
0
def autobk(energy, mu=None, group=None, rbkg=1, nknots=None, e0=None,
           edge_step=None, kmin=0, kmax=None, kweight=1, dk=0.1,
           win='hanning', k_std=None, chi_std=None, nfft=2048, kstep=0.05,
           pre_edge_kws=None, nclamp=4, clamp_lo=1, clamp_hi=1,
           calc_uncertainties=True, err_sigma=1, _larch=None, **kws):
    """Use Autobk algorithm to remove XAFS background

    Parameters:
    -----------
      energy:    1-d array of x-ray energies, in eV, or group
      mu:        1-d array of mu(E)
      group:     output group (and input group for e0 and edge_step).
      rbkg:      distance (in Ang) for chi(R) above
                 which the signal is ignored. Default = 1.
      e0:        edge energy, in eV.  If None, it will be determined.
      edge_step: edge step.  If None, it will be determined.
      pre_edge_kws:  keyword arguments to pass to pre_edge()
      nknots:    number of knots in spline.  If None, it will be determined.
      kmin:      minimum k value   [0]
      kmax:      maximum k value   [full data range].
      kweight:   k weight for FFT.  [1]
      dk:        FFT window window parameter.  [0.1]
      win:       FFT window function name.     ['hanning']
      nfft:      array size to use for FFT [2048]
      kstep:     k step size to use for FFT [0.05]
      k_std:     optional k array for standard chi(k).
      chi_std:   optional chi array for standard chi(k).
      nclamp:    number of energy end-points for clamp [2]
      clamp_lo:  weight of low-energy clamp [1]
      clamp_hi:  weight of high-energy clamp [1]
      calc_uncertaintites:  Flag to calculate uncertainties in
                            mu_0(E) and chi(k) [True]
      err_sigma: sigma level for uncertainties in mu_0(E) and chi(k) [1]

    Output arrays are written to the provided group.

    Follows the 'First Argument Group' convention.
    """
    msg = sys.stdout
    if _larch is not None:
        msg = _larch.writer.write
    if 'kw' in kws:
        kweight = kws.pop('kw')
    if len(kws) > 0:
        msg('Unrecognized a:rguments for autobk():\n')
        msg('    %s\n' % (', '.join(kws.keys())))
        return
    energy, mu, group = parse_group_args(energy, members=('energy', 'mu'),
                                         defaults=(mu,), group=group,
                                         fcn_name='autobk')
    if len(energy.shape) > 1:
        energy = energy.squeeze()
    if len(mu.shape) > 1:
        mu = mu.squeeze()

    energy = remove_dups(energy)
    # if e0 or edge_step are not specified, get them, either from the
    # passed-in group or from running pre_edge()
    group = set_xafsGroup(group, _larch=_larch)

    if edge_step is None and isgroup(group, 'edge_step'):
        edge_step = group.edge_step
    if e0 is None and isgroup(group, 'e0'):
        e0 = group.e0
    if e0 is None or edge_step is None:
        # need to run pre_edge:
        pre_kws = dict(nnorm=3, nvict=0, pre1=None,
                       pre2=-50., norm1=100., norm2=None)
        if pre_edge_kws is not None:
            pre_kws.update(pre_edge_kws)
        pre_edge(energy, mu, group=group, _larch=_larch, **pre_kws)
        if e0 is None:
            e0 = group.e0
        if edge_step is None:
            edge_step = group.edge_step
    if e0 is None or edge_step is None:
        msg('autobk() could not determine e0 or edge_step!: trying running pre_edge first\n')
        return

    # get array indices for rkbg and e0: irbkg, ie0
    ie0 = index_of(energy, e0)
    rgrid = np.pi/(kstep*nfft)
    if rbkg < 2*rgrid: rbkg = 2*rgrid
    irbkg = int(1.01 + rbkg/rgrid)

    # save ungridded k (kraw) and grided k (kout)
    # and ftwin (*k-weighting) for FT in residual
    enpe = energy[ie0:] - e0
    kraw = np.sign(enpe)*np.sqrt(ETOK*abs(enpe))
    if kmax is None:
        kmax = max(kraw)
    else:
        kmax = max(0, min(max(kraw), kmax))
    kout  = kstep * np.arange(int(1.01+kmax/kstep), dtype='float64')
    iemax = min(len(energy), 2+index_of(energy, e0+kmax*kmax/ETOK)) - 1

    # interpolate provided chi(k) onto the kout grid
    if chi_std is not None and k_std is not None:
        chi_std = np.interp(kout, k_std, chi_std)
    # pre-load FT window
    ftwin = kout**kweight * ftwindow(kout, xmin=kmin, xmax=kmax,
                                     window=win, dx=dk, dx2=dk)
    # calc k-value and initial guess for y-values of spline params
    nspl = max(5, min(64, int(2*rbkg*(kmax-kmin)/np.pi) + 2))
    spl_y, spl_k, spl_e  = np.zeros(nspl), np.zeros(nspl), np.zeros(nspl)
    for i in range(nspl):
        q  = kmin + i*(kmax-kmin)/(nspl - 1)
        ik = index_nearest(kraw, q)
        i1 = min(len(kraw)-1, ik + 5)
        i2 = max(0, ik - 5)
        spl_k[i] = kraw[ik]
        spl_e[i] = energy[ik+ie0]
        spl_y[i] = (2*mu[ik+ie0] + mu[i1+ie0] + mu[i2+ie0] ) / 4.0

    # get spline represention: knots, coefs, order=3
    # coefs will be varied in fit.
    knots, coefs, order = splrep(spl_k, spl_y)

    # set fit parameters from initial coefficients
    params = Parameters()
    for i in range(len(coefs)):
        params.add(name = FMT_COEF % i, value=coefs[i], vary=i<len(spl_y))

    initbkg, initchi = spline_eval(kraw[:iemax-ie0+1], mu[ie0:iemax+1],
                                   knots, coefs, order, kout)

    # do fit
    result = minimize(__resid, params, method='leastsq',
                      gtol=1.e-5, ftol=1.e-5, xtol=1.e-5, epsfcn=1.e-5,
                      kws = dict(ncoefs=len(coefs), chi_std=chi_std,
                                 knots=knots, order=order,
                                 kraw=kraw[:iemax-ie0+1],
                                 mu=mu[ie0:iemax+1], irbkg=irbkg, kout=kout,
                                 ftwin=ftwin, kweight=kweight,
                                 nfft=nfft, nclamp=nclamp,
                                 clamp_lo=clamp_lo, clamp_hi=clamp_hi))

    # write final results
    coefs = [result.params[FMT_COEF % i].value for i in range(len(coefs))]
    bkg, chi = spline_eval(kraw[:iemax-ie0+1], mu[ie0:iemax+1],
                           knots, coefs, order, kout)
    obkg = np.copy(mu)
    obkg[ie0:ie0+len(bkg)] = bkg

    # outputs to group
    group = set_xafsGroup(group, _larch=_larch)
    group.bkg  = obkg
    group.chie = (mu-obkg)/edge_step
    group.k    = kout
    group.chi  = chi/edge_step
    group.e0   = e0

    # now fill in 'autobk_details' group
    details = Group(params=result.params)

    details.init_bkg = np.copy(mu)
    details.init_bkg[ie0:ie0+len(bkg)] = initbkg
    details.init_chi = initchi/edge_step
    details.knots_e  = spl_e
    details.knots_y  = np.array([coefs[i] for i in range(nspl)])
    details.init_knots_y = spl_y
    details.nfev = result.nfev
    details.kmin = kmin
    details.kmax = kmax
    group.autobk_details = details

    # uncertainties in mu0 and chi: can be fairly slow.
    if calc_uncertainties:
        nchi = len(chi)
        nmue = iemax-ie0 + 1
        redchi = result.redchi
        covar  = result.covar / redchi
        jac_chi = np.zeros(nchi*nspl).reshape((nspl, nchi))
        jac_bkg = np.zeros(nmue*nspl).reshape((nspl, nmue))

        cvals, cerrs = [], []
        for i in range(len(coefs)):
             par = result.params[FMT_COEF % i]
             cvals.append(getattr(par, 'value', 0.0))
             cdel = getattr(par, 'stderr', 0.0)
             if cdel is None:
                 cdel = 0.0
             cerrs.append(cdel/2.0)
        cvals = np.array(cvals)
        cerrs = np.array(cerrs)

        # find derivatives by hand!
        _k = kraw[:nmue]
        _m = mu[ie0:iemax+1]
        for i in range(nspl):
            cval0 = cvals[i]
            cvals[i] = cval0 + cerrs[i]
            bkg1, chi1 = spline_eval(_k, _m, knots, cvals, order, kout)

            cvals[i] = cval0 - cerrs[i]
            bkg2, chi2 = spline_eval(_k, _m, knots, cvals, order, kout)

            cvals[i] = cval0
            jac_chi[i] = (chi1 - chi2) / (2*cerrs[i])
            jac_bkg[i] = (bkg1 - bkg2) / (2*cerrs[i])

        dfchi = np.zeros(nchi)
        dfbkg = np.zeros(nmue)
        for i in range(nspl):
            for j in range(nspl):
                dfchi += jac_chi[i]*jac_chi[j]*covar[i,j]
                dfbkg += jac_bkg[i]*jac_bkg[j]*covar[i,j]

        prob = 0.5*(1.0 + erf(err_sigma/np.sqrt(2.0)))
        dchi = t.ppf(prob, nchi-nspl) * np.sqrt(dfchi*redchi)
        dbkg = t.ppf(prob, nmue-nspl) * np.sqrt(dfbkg*redchi)

        group.delta_chi = dchi
        group.delta_bkg = 0.0*mu
        group.delta_bkg[ie0:ie0+len(dbkg)] = dbkg
Beispiel #9
0
def mback(energy, mu=None, group=None, z=None, edge='K', e0=None, pre1=None, pre2=-50,
          norm1=100, norm2=None, order=3, leexiang=False, tables='chantler', fit_erfc=False,
          return_f1=False, _larch=None):
    """
    Match mu(E) data for tabulated f''(E) using the MBACK algorithm and,
    optionally, the Lee & Xiang extension

    Arguments
    ----------
      energy:     array of x-ray energies, in eV.
      mu:         array of mu(E).
      group:      output group.
	  z:          atomic number of the absorber.
	  edge:       x-ray absorption edge (default 'K')
      e0:         edge energy, in eV.  If None, it will be determined here.
      pre1:       low E range (relative to e0) for pre-edge region.
      pre2:       high E range (relative to e0) for pre-edge region.
      norm1:      low E range (relative to e0) for post-edge region.
      norm2:      high E range (relative to e0) for post-edge region.
      order:      order of the legendre polynomial for normalization.
	              (default=3, min=0, max=5).
      leexiang:   boolean (default False)  to use the Lee & Xiang extension.
      tables:     tabulated scattering factors: 'chantler' [deprecated]
      fit_erfc:   boolean (default False) to fit parameters of error function.
      return_f1:  boolean (default False) to include the f1 array in the group.


    Returns
    -------
      None

    The following attributes will be written to the output group:
      group.f2:            tabulated f2(E).
      group.f1:            tabulated f1(E) (if 'return_f1' is True).
      group.fpp:           mback atched spectrum.
	  group.edge_step:     edge step of spectrum.
	  group.norm:          normalized spectrum.
      group.mback_params:  group of parameters for the minimization.

    Notes:
        Chantler tables is now used, with Cromer-Liberman no longer supported.
    References:
      * MBACK (Weng, Waldo, Penner-Hahn): http://dx.doi.org/10.1086/303711
      * Lee and Xiang: http://dx.doi.org/10.1088/0004-637X/702/2/970
      * Cromer-Liberman: http://dx.doi.org/10.1063/1.1674266
      * Chantler: http://dx.doi.org/10.1063/1.555974
    """
    order = max(min(order, MAXORDER), 0)

    ### implement the First Argument Group convention
    energy, mu, group = parse_group_args(energy, members=('energy', 'mu'),
                                         defaults=(mu,), group=group,
                                         fcn_name='mback')
    if len(energy.shape) > 1:
        energy = energy.squeeze()
    if len(mu.shape) > 1:
        mu = mu.squeeze()

    if _larch is not None:
        group = set_xafsGroup(group, _larch=_larch)

    energy = remove_dups(energy)
    if e0 is None or e0 < energy[1] or e0 > energy[-2]:
        e0 = find_e0(energy, mu, group=group)

    print(e0)
    ie0 = index_nearest(energy, e0)
    e0 = energy[ie0]

    pre1_input = pre1
    norm2_input = norm2

    if pre1 is None:  pre1  = min(energy) - e0
    if norm2 is None: norm2 = max(energy) - e0
    if norm2 < 0:     norm2 = max(energy) - e0 - norm2
    pre1  = max(pre1,  (min(energy) - e0))
    norm2 = min(norm2, (max(energy) - e0))

    if pre1 > pre2:
        pre1, pre2 = pre2, pre1
    if norm1 > norm2:
        norm1, norm2 = norm2, norm1

    p1 = index_of(energy, pre1+e0)
    p2 = index_nearest(energy, pre2+e0)
    n1 = index_nearest(energy, norm1+e0)
    n2 = index_of(energy, norm2+e0)
    if p2 - p1 < 2:
        p2 = min(len(energy), p1 + 2)
    if n2 - n1 < 2:
        p2 = min(len(energy), p1 + 2)

    ## theta is a boolean array indicating the
	## energy values considered for the fit.
    ## theta=1 for included values, theta=0 for excluded values.
    theta            = np.zeros_like(energy, dtype='int')
    theta[p1:(p2+1)] = 1
    theta[n1:(n2+1)] = 1

    ## weights for the pre- and post-edge regions, as defined in the MBACK paper (?)
    weight            = np.ones_like(energy, dtype=float)
    weight[p1:(p2+1)] = np.sqrt(np.sum(weight[p1:(p2+1)]))
    weight[n1:(n2+1)] = np.sqrt(np.sum(weight[n1:(n2+1)]))

    ## get the f'' function from CL or Chantler
    f1 = f1_chantler(z, energy)
    f2 = f2_chantler(z, energy)
    group.f2 = f2
    if return_f1:
        group.f1 = f1

    em = find_xray_line(z, edge).energy # erfc centroid

    params = Parameters()
    params.add(name='s',  value=1.0,  vary=True)  # scale of data
    params.add(name='xi', value=50.0, vary=False, min=0) # width of erfc
    params.add(name='a',  value=0.0, vary=False)  # amplitude of erfc
    if fit_erfc:
        params['a'].vary  = True
        params['a'].value = 0.5
        params['xi'].vary  = True

    for i in range(order+1): # polynomial coefficients
        params.add(name='c%d' % i, value=0, vary=True)

    out = minimize(match_f2, params, method='leastsq',
                   gtol=1.e-5, ftol=1.e-5, xtol=1.e-5, epsfcn=1.e-5,
                   kws = dict(en=energy, mu=mu, f2=f2, e0=e0, em=em,
                              order=order, weight=weight, theta=theta, leexiang=leexiang))

    opars = out.params.valuesdict()
    eoff = energy - e0

    norm_function = opars['a']*erfc((energy-em)/opars['xi']) + opars['c0']
    for i in range(order):
        attr = 'c%d' % (i + 1)
        if attr in opars:
            norm_function  += opars[attr]* eoff**(i + 1)

    group.e0 = e0
    group.fpp = opars['s']*mu - norm_function
    # calculate edge step and normalization from f2 + norm_function
    pre_f2 = preedge(energy, group.f2+norm_function, e0=e0, pre1=pre1,
	         pre2=pre2, norm1=norm1, norm2=norm2, nnorm=2, nvict=0)
    group.edge_step = pre_f2['edge_step'] / opars['s']
    group.norm = (opars['s']*mu -  pre_f2['pre_edge']) / pre_f2['edge_step']
    group.mback_details = Group(params=opars, pre_f2=pre_f2,
                                f2_scaled=opars['s']*f2,
                                norm_function=norm_function)