def test_dataframes_mnl5(mtc): m5 = NumbaModel() from larch.roles import P, X, PX m5.utility_co[2] = P("ASC_SR2") * X("1") + P("hhinc#2") * X("hhinc") m5.utility_co[3] = P("ASC_SR3P") * X("1") + P("hhinc#3") * X("hhinc") m5.utility_co[4] = P("ASC_TRAN") * X("1") + P("hhinc#4") * X("hhinc") m5.utility_co[5] = P("ASC_BIKE") * X("1") + P("hhinc#5") * X("hhinc") m5.utility_co[6] = P("ASC_WALK") * X("1") + P("hhinc#6") * X("hhinc") m5.utility_ca = PX("tottime") + PX("totcost") m5.dataframes = mtc beta_in1 = { 'ASC_BIKE': -0.8523646111088327, 'ASC_SR2': -0.5233769323949348, 'ASC_SR3P': -2.3202089848081027, 'ASC_TRAN': -0.05615933557609158, 'ASC_WALK': 0.050082767550586924, 'hhinc#2': -0.001040241396513087, 'hhinc#3': 0.0031822969445656542, 'hhinc#4': -0.0017162484345735326, 'hhinc#5': -0.004071521055900851, 'hhinc#6': -0.0021316332241034445, 'totcost': -0.001336661560553717, 'tottime': -0.01862990704919887, } m5.choice_ca_var = 'chose' m5.availability_var = '_avail_' ll2 = m5.loglike2(beta_in1, return_series=True) q1_dll = { 'ASC_BIKE': -139.43832, 'ASC_SR2': -788.00574, 'ASC_SR3P': -126.84879, 'ASC_TRAN': -357.75186, 'ASC_WALK': -116.137886, 'hhinc#2': -46416.28, 'hhinc#3': -8353.63, 'hhinc#4': -21409.012, 'hhinc#5': -8299.654, 'hhinc#6': -7395.375, 'totcost': 39520.043, 'tottime': -26556.303, } assert ll2.ll == approx(-4930.3212890625) for k in q1_dll: assert q1_dll[k] == approx(dict( ll2.dll)[k], rel=1e-5), f"{k} {q1_dll[k]} != {dict(ll2.dll)[k]}" # Test calculate_parameter_covariance doesn't choke if all holdfasts are on: m5.lock_values(*beta_in1.keys()) m5.calculate_parameter_covariance() assert np.all(m5.pf['std_err'] == 0) assert np.all(m5.pf['robust_std_err'] == 0)
def test_mtc_with_dataset(mtc_dataset): pytest.importorskip("sharrow") m = NumbaModel(alts=mtc_dataset['_altid_'].values) from larch.roles import P, X, PX m.utility_co[2] = P("ASC_SR2") + P("hhinc#2") * X("hhinc") m.utility_co[3] = P("ASC_SR3P") + P("hhinc#3") * X("hhinc") m.utility_co[4] = P("ASC_TRAN") + P("hhinc#4") * X("hhinc") m.utility_co[5] = P("ASC_BIKE") + P("hhinc#5") * X("hhinc") m.utility_co[6] = P("ASC_WALK") + P("hhinc#6") * X("hhinc") m.utility_ca = PX("tottime") + PX("totcost") m.availability_var = 'avail' m.choice_ca_var = 'chose' m.datatree = mtc_dataset assert m.loglike() == approx(-7309.600971749634) m.set_cap(20) result = m.maximize_loglike(method='slsqp') assert result.loglike == approx(-3626.1862595453385)
def test_dataframes_mnl5_co(mtc): m5 = NumbaModel() from larch.roles import P, X, PX m5.utility_co[2] = P("ASC_SR2") + P("hhinc#2") * X("hhinc") m5.utility_co[3] = P("ASC_SR3P") + P("hhinc#3") * X("hhinc") m5.utility_co[4] = P("ASC_TRAN") + P("hhinc#4") * X("hhinc") m5.utility_co[5] = P("ASC_BIKE") + P("hhinc#5") * X("hhinc") m5.utility_co[6] = P("ASC_WALK") + P("hhinc#6") * X("hhinc") m5.dataframes = mtc beta_in1 = { 'ASC_BIKE': -0.8523646111088327, 'ASC_SR2': -0.5233769323949348, 'ASC_SR3P': -2.3202089848081027, 'ASC_TRAN': -0.05615933557609158, 'ASC_WALK': 0.050082767550586924, 'hhinc#2': -0.001040241396513087, 'hhinc#3': 0.0031822969445656542, 'hhinc#4': -0.0017162484345735326, 'hhinc#5': -0.004071521055900851, 'hhinc#6': -0.0021316332241034445, } ll2 = m5.loglike2(beta_in1, return_series=True) q1_dll = { 'ASC_BIKE': -139.2947, 'ASC_SR2': -598.531, 'ASC_SR3P': -77.68647, 'ASC_TRAN': -715.4206, 'ASC_WALK': -235.8408, 'hhinc#2': -35611.855, 'hhinc#3': -5276.0254, 'hhinc#4': -42263.88, 'hhinc#5': -8355.174, 'hhinc#6': -13866.567, } assert -5594.70654296875 == approx(ll2.ll, rel=1e-5) for k in q1_dll: assert q1_dll[k] == approx(dict( ll2.dll)[k], rel=1e-5), f"{k} {q1_dll[k]} != {dict(ll2.dll)[k]}"
def test_constrained_optimization(): from larch.numba import example m = example(1) from larch.model.constraints import RatioBound, OrderingBound m.set_value("totcost", -0.001, maximum=0) m.set_value("tottime", maximum=0) m.constraints = [ RatioBound(P("totcost"), P("tottime"), min_ratio=0.1, max_ratio=1.0, scale=1), OrderingBound(P("ASC_WALK"), P("ASC_BIKE")), ] m.load_data() r = m.maximize_loglike(method='slsqp') assert r.loglike == approx(-3647.76149525901) x = { 'ASC_BIKE': -0.8087472748965431, 'ASC_SR2': -2.193449976582375, 'ASC_SR3P': -3.744188833076006, 'ASC_TRAN': -0.7603092451373663, 'ASC_WALK': -0.8087472751682576, 'hhinc#2': -0.0021699330391421407, 'hhinc#3': 0.0003696763687090173, 'hhinc#4': -0.00509836274463602, 'hhinc#5': -0.0431749907425252, 'hhinc#6': -0.002373556571769923, 'totcost': -0.004910169034222911, 'tottime': -0.04790588175791953, } assert dict(r.x) == approx(x) assert r.iteration_number == 48 m.set_values("null") m.set_value("totcost", -0.001, maximum=0) r2 = m.maximize_loglike(method='slsqp', bhhh_start=3) assert r2.iteration_number == 24 assert r2.loglike == approx(-3647.76149525901) assert dict(r2.x) == approx(x, rel=1e-2)
def test_latent_class_mixed_data(swissmetro_raw_df): dfs = larch.DataFrames(swissmetro_raw_df, alt_codes=[1, 2, 3]) m1 = larch.Model(dataservice=dfs) m1.availability_co_vars = { 1: "TRAIN_AV_SP", 2: "SM_AV", 3: "CAR_AV_SP", } m1.choice_co_code = 'CHOICE' m1.utility_co[1] = P("ASC_TRAIN") + X("TRAIN_CO*(GA==0)") * P("B_COST") m1.utility_co[2] = X("SM_CO*(GA==0)") * P("B_COST") m1.utility_co[3] = P("ASC_CAR") + X("CAR_CO") * P("B_COST") m2 = larch.Model(dataservice=dfs) m2.availability_co_vars = { 1: "TRAIN_AV_SP", 2: "SM_AV", 3: "CAR_AV_SP", } m2.choice_co_code = 'CHOICE' m2.utility_co[1] = P("ASC_TRAIN") + X("TRAIN_TT") * P("B_TIME") + X( "TRAIN_CO*(GA==0)") * P("B_COST") m2.utility_co[ 2] = X("SM_TT") * P("B_TIME") + X("SM_CO*(GA==0)") * P("B_COST") m2.utility_co[3] = P( "ASC_CAR") + X("CAR_TT") * P("B_TIME") + X("CAR_CO") * P("B_COST") dfs2 = larch.DataFrames(swissmetro_raw_df, alt_codes=[1, 2]) km = larch.Model(dataservice=dfs2) km.utility_co[2] = P.W_OTHER from larch.model.latentclass import LatentClassModel with raises(ValueError): m = LatentClassModel(km, {1: m1, 2: m2})
def test_latent_class(swissmetro_raw_df): dfs = larch.DataFrames(swissmetro_raw_df, alt_codes=[1, 2, 3]) m1 = larch.Model(dataservice=dfs) m1.availability_co_vars = { 1: "TRAIN_AV_SP", 2: "SM_AV", 3: "CAR_AV_SP", } m1.choice_co_code = 'CHOICE' m1.utility_co[1] = P("ASC_TRAIN") + X("TRAIN_CO*(GA==0)") * P("B_COST") m1.utility_co[2] = X("SM_CO*(GA==0)") * P("B_COST") m1.utility_co[3] = P("ASC_CAR") + X("CAR_CO") * P("B_COST") m2 = larch.Model(dataservice=dfs) m2.availability_co_vars = { 1: "TRAIN_AV_SP", 2: "SM_AV", 3: "CAR_AV_SP", } m2.choice_co_code = 'CHOICE' m2.utility_co[1] = P("ASC_TRAIN") + X("TRAIN_TT") * P("B_TIME") + X( "TRAIN_CO*(GA==0)") * P("B_COST") m2.utility_co[ 2] = X("SM_TT") * P("B_TIME") + X("SM_CO*(GA==0)") * P("B_COST") m2.utility_co[3] = P( "ASC_CAR") + X("CAR_TT") * P("B_TIME") + X("CAR_CO") * P("B_COST") km = larch.Model() km.utility_co[2] = P.W_OTHER from larch.model.latentclass import LatentClassModel m = LatentClassModel(km, {1: m1, 2: m2}) m.load_data() m.set_value(P.ASC_CAR, 0.125 / 2) m.set_value(P.ASC_TRAIN, -0.398 / 2) m.set_value(P.B_COST, -.0126 / 2) m.set_value(P.B_TIME, -0.028 / 2) m.set_value(P.W_OTHER, 1.095 / 2) check1 = m.check_d_loglike() assert dict(check1.data.analytic) == approx({ 'ASC_CAR': -81.69736186616234, 'ASC_TRAIN': -613.131371089499, 'B_COST': -6697.31706964777, 'B_TIME': -40104.940072046316, 'W_OTHER': 245.43145056623683, }) assert check1.data.similarity.min() > 4 m.set_value(P.ASC_CAR, 0.125) m.set_value(P.ASC_TRAIN, -0.398) m.set_value(P.B_COST, -.0126) m.set_value(P.B_TIME, -0.028) m.set_value(P.W_OTHER, 1.095) assert m.loglike() == approx(-5208.502259337974) check2 = m.check_d_loglike() assert dict(check2.data.analytic) == approx({ 'ASC_CAR': 0.6243716033364302, 'ASC_TRAIN': 0.9297965389102578, 'B_COST': -154.03997923797007, 'B_TIME': 76.19297915128493, 'W_OTHER': -0.7936963902343083, }) assert check2.data.similarity.min( ) > 2 # similarity is a bit lower very close to the optimum
def test_latent_class_full_data(swissmetro_raw_df): dfs = larch.DataFrames(swissmetro_raw_df, alt_codes=[1, 2, 3]) m1 = larch.Model(dataservice=dfs) m1.availability_co_vars = { 1: "TRAIN_AV_SP", 2: "SM_AV", 3: "CAR_AV_SP", } m1.choice_co_code = 'CHOICE' m1.utility_co[1] = P("ASC_TRAIN") + X("TRAIN_CO*(GA==0)") * P("B_COST") m1.utility_co[2] = X("SM_CO*(GA==0)") * P("B_COST") m1.utility_co[3] = P("ASC_CAR") + X("CAR_CO") * P("B_COST") m2 = larch.Model(dataservice=dfs) m2.availability_co_vars = { 1: "TRAIN_AV_SP", 2: "SM_AV", 3: "CAR_AV_SP", } m2.choice_co_code = 'CHOICE' m2.utility_co[1] = P("ASC_TRAIN") + X("TRAIN_TT") * P("B_TIME") + X( "TRAIN_CO*(GA==0)") * P("B_COST") m2.utility_co[ 2] = X("SM_TT") * P("B_TIME") + X("SM_CO*(GA==0)") * P("B_COST") m2.utility_co[3] = P( "ASC_CAR") + X("CAR_TT") * P("B_TIME") + X("CAR_CO") * P("B_COST") km = larch.Model(dataservice=dfs, alts=[1, 2]) km.utility_co[2] = P.W_OTHER from larch.model.latentclass import LatentClassModel m = LatentClassModel(km, {1: m1, 2: m2}) m.load_data() m.set_value(P.ASC_CAR, 0.125 / 2) m.set_value(P.ASC_TRAIN, -0.398 / 2) m.set_value(P.B_COST, -.0126 / 2) m.set_value(P.B_TIME, -0.028 / 2) m.set_value(P.W_OTHER, 1.095 / 2) check1 = m.check_d_loglike() assert dict(check1.data.analytic) == approx({ 'ASC_CAR': -81.69736186616234, 'ASC_TRAIN': -613.131371089499, 'B_COST': -6697.31706964777, 'B_TIME': -40104.940072046316, 'W_OTHER': 245.43145056623683, })
def test_dataframes_mnl5qt(mtcq): m5 = NumbaModel() from larch.roles import P, X, PX m5.utility_co[2] = P("ASC_SR2") + P("hhinc#2") * X("hhinc") m5.utility_co[3] = P("ASC_SR3P") + P("hhinc#3") * X("hhinc") m5.utility_co[4] = P("ASC_TRAN") + P("hhinc#4") * X("hhinc") m5.utility_co[5] = P("ASC_BIKE") + P("hhinc#5") * X("hhinc") m5.utility_co[6] = P("ASC_WALK") + P("hhinc#6") * X("hhinc") m5.utility_ca = PX("tottime") + PX("totcost") m5.quantity_ca = (+P("FakeSizeAlt") * X('altnum+1') + P("FakeSizeIvtt") * X('ivtt+1')) m5.quantity_scale = P.Theta m5.dataframes = mtcq beta_in1 = { 'ASC_BIKE': -0.8523646111088327, 'ASC_SR2': -0.5233769323949348, 'ASC_SR3P': -2.3202089848081027, 'ASC_TRAN': -0.05615933557609158, 'ASC_WALK': 0.050082767550586924, 'hhinc#2': -0.001040241396513087, 'hhinc#3': 0.0031822969445656542, 'hhinc#4': -0.0017162484345735326, 'hhinc#5': -0.004071521055900851, 'hhinc#6': -0.0021316332241034445, 'totcost': -0.001336661560553717, 'tottime': -0.01862990704919887, 'FakeSizeAlt': 0.123, 'Theta': 1.0, } ll2 = m5.loglike2(beta_in1, return_series=True) q1_dll = { 'ASC_BIKE': -272.10342, 'ASC_SR2': -884.91547, 'ASC_SR3P': -181.50142, 'ASC_TRAN': -519.74567, 'ASC_WALK': -37.595825, 'FakeSizeAlt': -104.971085, 'FakeSizeIvtt': 104.971085, 'hhinc#2': -51884.465, 'hhinc#3': -11712.436, 'hhinc#4': -30848.334, 'hhinc#5': -15970.957, 'hhinc#6': -3269.796, 'totcost': 59049.66, 'tottime': -34646.656, 'Theta': -838.5296020507812, } assert ll2.ll == approx(-5598.75244140625, rel=1e-5), f"ll2.ll={ll2.ll}" for k in q1_dll: assert q1_dll[k] == approx(dict( ll2.dll)[k], rel=1e-5), f"{k} {q1_dll[k]} != {dict(ll2.dll)[k]}" correct_null_dloglike = { 'ASC_SR2': -676.598075, 'ASC_SR3P': -1166.26503, 'ASC_TRAN': -491.818432, 'ASC_BIKE': -443.123432, 'ASC_WALK': 3.970966339111328, 'FakeSizeAlt': -86.9414603, 'FakeSizeIvtt': 86.94156646728516, 'hhinc#2': -40249.0548, 'hhinc#3': -67312.464, 'hhinc#4': -30693.2152, 'hhinc#5': -27236.7637, 'hhinc#6': -1389.66274, 'totcost': 145788.421875, 'tottime': -48732.99609375, 'Theta': -1362.409129, } ll0 = m5.loglike2('null', return_series=True) assert (ll0.ll == approx(-8486.55377320886)) dict_ll0_dll = dict(ll0.dll) for k in dict_ll0_dll: assert dict_ll0_dll[k] == approx( correct_null_dloglike[k], rel=1e-5 ), f'{k} {dict_ll0_dll[k]} == {(correct_null_dloglike[k])}'
def test_weighted_nl_bhhh(mtc2): j1, j2 = mtc2 m5 = NumbaModel() from larch.roles import P, X, PX m5.utility_co[2] = P("ASC_SR2") + P("hhinc#2") * X("hhinc") m5.utility_co[3] = P("ASC_SR3P") + P("hhinc#3") * X("hhinc") m5.utility_co[4] = P("ASC_TRAN") + P("hhinc#4") * X("hhinc") m5.utility_co[5] = P("ASC_BIKE") + P("hhinc#5") * X("hhinc") m5.utility_co[6] = P("ASC_WALK") + P("hhinc#6") * X("hhinc") m5.utility_ca = PX("tottime") + PX("totcost") m5.initialize_graph(alternative_codes=[1, 2, 3, 4, 5, 6]) m5.graph.add_node(10, children=(5, 6), parameter='MU_nonmotor') m5.graph.add_node(11, children=(1, 2, 3), parameter='MU_car') beta_in1 = { 'ASC_BIKE': -0.8523646111088327, 'ASC_SR2': -0.5233769323949348, 'ASC_SR3P': -2.3202089848081027, 'ASC_TRAN': -0.05615933557609158, 'ASC_WALK': 0.050082767550586924, 'hhinc#2': -0.001040241396513087, 'hhinc#3': 0.0031822969445656542, 'hhinc#4': -0.0017162484345735326, 'hhinc#5': -0.004071521055900851, 'hhinc#6': -0.0021316332241034445, 'totcost': -0.001336661560553717, 'tottime': -0.01862990704919887, } m5.pf_sort() m5.dataframes = j1 ll1 = m5.loglike2(beta_in1) dll1 = m5.d_loglike(beta_in1, return_series=True) bhhh1 = m5.bhhh(beta_in1, return_dataframe=True) from larch.model import PERSIST_ALL ll1 = m5.loglike2_bhhh(beta_in1, return_series=True, persist=PERSIST_ALL) m5.dataframes = j2 m5.mangle() ll2 = m5.loglike2_bhhh(beta_in1, return_series=True, persist=PERSIST_ALL) q1_dll = { 'ASC_BIKE': -518.3145850719714, 'ASC_SR2': 6659.9870966633935, 'ASC_SR3P': -702.5461471592637, 'ASC_TRAN': -2069.2556854096474, 'ASC_WALK': -680.4136747673049, 'hhinc#2': 390300.04704708763, 'hhinc#3': -44451.89987844542, 'hhinc#4': -117769.88300441334, 'hhinc#5': -29774.93396444093, 'hhinc#6': -36754.12651709895, 'totcost': -280658.27799924824, 'tottime': -66172.15328009706, } assert (j1.weight_normalization, j2.weight_normalization) == (3.0, 1.5) assert (ll1.ll, ll2.ll) == approx( (-18829.858031378415, -18829.858031378433)) dict_ll1_dll = dict(ll1.dll) dict_ll2_dll = dict(ll2.dll) for k in q1_dll: assert q1_dll[k] == approx( dict_ll1_dll[k], rel=1e-5), f"{k} {q1_dll[k]} = {dict_ll1_dll[k]}" assert q1_dll[k] == approx( dict_ll2_dll[k], rel=1e-5), f"{k} {q1_dll[k]} = {dict_ll2_dll[k]}" bhhh_correct = { ('ASC_BIKE', 'ASC_BIKE'): 102.45820678523614, ('ASC_BIKE', 'ASC_SR2'): -285.118579955482, ('ASC_BIKE', 'ASC_SR3P'): 19.760852749005203, ('ASC_BIKE', 'ASC_TRAN'): 76.573987238185, ('ASC_BIKE', 'ASC_WALK'): 32.348453110164314, ('ASC_BIKE', 'MU_car'): -219.27982884201612, ('ASC_BIKE', 'MU_nonmotor'): 69.38016083689357, ('ASC_BIKE', 'hhinc#2'): -16063.872652571805, ('ASC_BIKE', 'hhinc#3'): 1231.2989480753972, ('ASC_BIKE', 'hhinc#4'): 4436.148875125189, ('ASC_BIKE', 'hhinc#5'): 5322.601183863066, ('ASC_BIKE', 'hhinc#6'): 1870.2419763938155, ('ASC_BIKE', 'totcost'): 651.7010091466225, ('ASC_BIKE', 'tottime'): 3410.093422258546, ('ASC_SR2', 'ASC_BIKE'): -285.118579955482, ('ASC_SR2', 'ASC_SR2'): 6156.860848428152, ('ASC_SR2', 'ASC_SR3P'): -412.00155512537197, ('ASC_SR2', 'ASC_TRAN'): -1312.7312255613883, ('ASC_SR2', 'ASC_WALK'): -461.36148965146094, ('ASC_SR2', 'MU_car'): 3491.370489213462, ('ASC_SR2', 'MU_nonmotor'): -244.85789490150424, ('ASC_SR2', 'hhinc#2'): 360960.5064929566, ('ASC_SR2', 'hhinc#3'): -25836.407171358624, ('ASC_SR2', 'hhinc#4'): -73800.95798232155, ('ASC_SR2', 'hhinc#5'): -16063.872652571805, ('ASC_SR2', 'hhinc#6'): -23821.208247582188, ('ASC_SR2', 'totcost'): -255314.7240133045, ('ASC_SR2', 'tottime'): -26043.721750561366, ('ASC_SR3P', 'ASC_BIKE'): 19.760852749005203, ('ASC_SR3P', 'ASC_SR2'): -412.00155512537197, ('ASC_SR3P', 'ASC_SR3P'): 194.01812799791654, ('ASC_SR3P', 'ASC_TRAN'): 75.72048947864153, ('ASC_SR3P', 'ASC_WALK'): 21.26889182584585, ('ASC_SR3P', 'MU_car'): 108.36680636408329, ('ASC_SR3P', 'MU_nonmotor'): 11.214695666269147, ('ASC_SR3P', 'hhinc#2'): -25836.407171358624, ('ASC_SR3P', 'hhinc#3'): 11951.689201021742, ('ASC_SR3P', 'hhinc#4'): 4654.093182472214, ('ASC_SR3P', 'hhinc#5'): 1231.298948075397, ('ASC_SR3P', 'hhinc#6'): 1291.5421535124285, ('ASC_SR3P', 'totcost'): -873.8405986324798, ('ASC_SR3P', 'tottime'): 2847.414853230762, ('ASC_TRAN', 'ASC_BIKE'): 76.573987238185, ('ASC_TRAN', 'ASC_SR2'): -1312.7312255613883, ('ASC_TRAN', 'ASC_SR3P'): 75.72048947864153, ('ASC_TRAN', 'ASC_TRAN'): 795.8802149505714, ('ASC_TRAN', 'ASC_WALK'): 106.98212315599287, ('ASC_TRAN', 'MU_car'): -930.0194408568389, ('ASC_TRAN', 'MU_nonmotor'): 58.620406514681704, ('ASC_TRAN', 'hhinc#2'): -73800.95798232155, ('ASC_TRAN', 'hhinc#3'): 4654.093182472214, ('ASC_TRAN', 'hhinc#4'): 43744.97724907036, ('ASC_TRAN', 'hhinc#5'): 4436.148875125189, ('ASC_TRAN', 'hhinc#6'): 5766.003794801971, ('ASC_TRAN', 'totcost'): -289.26636202646205, ('ASC_TRAN', 'tottime'): 17843.995404571957, ('ASC_WALK', 'ASC_BIKE'): 32.348453110164314, ('ASC_WALK', 'ASC_SR2'): -461.36148965146094, ('ASC_WALK', 'ASC_SR3P'): 21.26889182584585, ('ASC_WALK', 'ASC_TRAN'): 106.98212315599287, ('ASC_WALK', 'ASC_WALK'): 257.4268216790701, ('ASC_WALK', 'MU_car'): -372.1302408319178, ('ASC_WALK', 'MU_nonmotor'): 84.61754029339109, ('ASC_WALK', 'hhinc#2'): -23821.208247582188, ('ASC_WALK', 'hhinc#3'): 1291.5421535124283, ('ASC_WALK', 'hhinc#4'): 5766.003794801973, ('ASC_WALK', 'hhinc#5'): 1870.2419763938155, ('ASC_WALK', 'hhinc#6'): 12476.241347103962, ('ASC_WALK', 'totcost'): -4472.049603002317, ('ASC_WALK', 'tottime'): 7147.124392574635, ('MU_car', 'ASC_BIKE'): -219.27982884201612, ('MU_car', 'ASC_SR2'): 3491.370489213462, ('MU_car', 'ASC_SR3P'): 108.36680636408329, ('MU_car', 'ASC_TRAN'): -930.0194408568389, ('MU_car', 'ASC_WALK'): -372.1302408319178, ('MU_car', 'MU_car'): 3048.745424759559, ('MU_car', 'MU_nonmotor'): -215.09078801898488, ('MU_car', 'hhinc#2'): 209343.58472860648, ('MU_car', 'hhinc#3'): 4904.0435782757395, ('MU_car', 'hhinc#4'): -54645.9131974324, ('MU_car', 'hhinc#5'): -12553.188578813708, ('MU_car', 'hhinc#6'): -20397.013767114706, ('MU_car', 'totcost'): -130926.84443581512, ('MU_car', 'tottime'): -19903.25282015786, ('MU_nonmotor', 'ASC_BIKE'): 69.38016083689357, ('MU_nonmotor', 'ASC_SR2'): -244.85789490150424, ('MU_nonmotor', 'ASC_SR3P'): 11.214695666269147, ('MU_nonmotor', 'ASC_TRAN'): 58.620406514681704, ('MU_nonmotor', 'ASC_WALK'): 84.61754029339109, ('MU_nonmotor', 'MU_car'): -215.09078801898488, ('MU_nonmotor', 'MU_nonmotor'): 106.11047953795583, ('MU_nonmotor', 'hhinc#2'): -13788.1097937347, ('MU_nonmotor', 'hhinc#3'): 711.5550773867994, ('MU_nonmotor', 'hhinc#4'): 3435.2281478513137, ('MU_nonmotor', 'hhinc#5'): 3589.230542100178, ('MU_nonmotor', 'hhinc#6'): 4773.341396211997, ('MU_nonmotor', 'totcost'): -571.9687206358277, ('MU_nonmotor', 'tottime'): 3082.561197668304, ('hhinc#2', 'ASC_BIKE'): -16063.872652571805, ('hhinc#2', 'ASC_SR2'): 360960.5064929566, ('hhinc#2', 'ASC_SR3P'): -25836.407171358624, ('hhinc#2', 'ASC_TRAN'): -73800.95798232155, ('hhinc#2', 'ASC_WALK'): -23821.208247582188, ('hhinc#2', 'MU_car'): 209343.58472860648, ('hhinc#2', 'MU_nonmotor'): -13788.1097937347, ('hhinc#2', 'hhinc#2'): 27739015.863625906, ('hhinc#2', 'hhinc#3'): -2107887.124567991, ('hhinc#2', 'hhinc#4'): -5551797.986970259, ('hhinc#2', 'hhinc#5'): -1180261.9541857818, ('hhinc#2', 'hhinc#6'): -1731206.5786703678, ('hhinc#2', 'totcost'): -15915701.570008647, ('hhinc#2', 'tottime'): -1404099.9397647784, ('hhinc#3', 'ASC_BIKE'): 1231.2989480753972, ('hhinc#3', 'ASC_SR2'): -25836.407171358624, ('hhinc#3', 'ASC_SR3P'): 11951.689201021742, ('hhinc#3', 'ASC_TRAN'): 4654.093182472214, ('hhinc#3', 'ASC_WALK'): 1291.5421535124283, ('hhinc#3', 'MU_car'): 4904.0435782757395, ('hhinc#3', 'MU_nonmotor'): 711.5550773867994, ('hhinc#3', 'hhinc#2'): -2107887.124567991, ('hhinc#3', 'hhinc#3'): 985365.3310746389, ('hhinc#3', 'hhinc#4'): 365082.18492341647, ('hhinc#3', 'hhinc#5'): 96863.55545307972, ('hhinc#3', 'hhinc#6'): 105646.64587551646, ('hhinc#3', 'totcost'): -18197.96776085889, ('hhinc#3', 'tottime'): 173393.88742844868, ('hhinc#4', 'ASC_BIKE'): 4436.148875125189, ('hhinc#4', 'ASC_SR2'): -73800.95798232155, ('hhinc#4', 'ASC_SR3P'): 4654.093182472214, ('hhinc#4', 'ASC_TRAN'): 43744.97724907036, ('hhinc#4', 'ASC_WALK'): 5766.003794801973, ('hhinc#4', 'MU_car'): -54645.9131974324, ('hhinc#4', 'MU_nonmotor'): 3435.2281478513137, ('hhinc#4', 'hhinc#2'): -5551797.986970259, ('hhinc#4', 'hhinc#3'): 365082.18492341647, ('hhinc#4', 'hhinc#4'): 3238425.3752979534, ('hhinc#4', 'hhinc#5'): 328415.284903046, ('hhinc#4', 'hhinc#6'): 431510.21040576114, ('hhinc#4', 'totcost'): -203942.9008935652, ('hhinc#4', 'tottime'): 996131.649172921, ('hhinc#5', 'ASC_BIKE'): 5322.601183863066, ('hhinc#5', 'ASC_SR2'): -16063.872652571805, ('hhinc#5', 'ASC_SR3P'): 1231.298948075397, ('hhinc#5', 'ASC_TRAN'): 4436.148875125189, ('hhinc#5', 'ASC_WALK'): 1870.2419763938155, ('hhinc#5', 'MU_car'): -12553.188578813708, ('hhinc#5', 'MU_nonmotor'): 3589.230542100178, ('hhinc#5', 'hhinc#2'): -1180261.9541857818, ('hhinc#5', 'hhinc#3'): 96863.55545307972, ('hhinc#5', 'hhinc#4'): 328415.284903046, ('hhinc#5', 'hhinc#5'): 376816.62222404545, ('hhinc#5', 'hhinc#6'): 139543.8152706944, ('hhinc#5', 'totcost'): 64871.45953365474, ('hhinc#5', 'tottime'): 191184.20323081187, ('hhinc#6', 'ASC_BIKE'): 1870.2419763938155, ('hhinc#6', 'ASC_SR2'): -23821.208247582188, ('hhinc#6', 'ASC_SR3P'): 1291.5421535124285, ('hhinc#6', 'ASC_TRAN'): 5766.003794801971, ('hhinc#6', 'ASC_WALK'): 12476.241347103962, ('hhinc#6', 'MU_car'): -20397.013767114706, ('hhinc#6', 'MU_nonmotor'): 4773.341396211997, ('hhinc#6', 'hhinc#2'): -1731206.5786703678, ('hhinc#6', 'hhinc#3'): 105646.64587551646, ('hhinc#6', 'hhinc#4'): 431510.21040576114, ('hhinc#6', 'hhinc#5'): 139543.8152706944, ('hhinc#6', 'hhinc#6'): 872604.6192807175, ('hhinc#6', 'totcost'): -95081.8079551341, ('hhinc#6', 'tottime'): 364196.75026433234, ('totcost', 'ASC_BIKE'): 651.7010091466225, ('totcost', 'ASC_SR2'): -255314.7240133045, ('totcost', 'ASC_SR3P'): -873.8405986324798, ('totcost', 'ASC_TRAN'): -289.26636202646205, ('totcost', 'ASC_WALK'): -4472.049603002317, ('totcost', 'MU_car'): -130926.84443581512, ('totcost', 'MU_nonmotor'): -571.9687206358277, ('totcost', 'hhinc#2'): -15915701.570008647, ('totcost', 'hhinc#3'): -18197.96776085889, ('totcost', 'hhinc#4'): -203942.9008935652, ('totcost', 'hhinc#5'): 64871.45953365474, ('totcost', 'hhinc#6'): -95081.8079551341, ('totcost', 'totcost'): 67516567.00440338, ('totcost', 'tottime'): -775245.3645765011, ('tottime', 'ASC_BIKE'): 3410.093422258546, ('tottime', 'ASC_SR2'): -26043.721750561366, ('tottime', 'ASC_SR3P'): 2847.414853230762, ('tottime', 'ASC_TRAN'): 17843.995404571957, ('tottime', 'ASC_WALK'): 7147.124392574635, ('tottime', 'MU_car'): -19903.25282015786, ('tottime', 'MU_nonmotor'): 3082.561197668304, ('tottime', 'hhinc#2'): -1404099.9397647784, ('tottime', 'hhinc#3'): 173393.88742844868, ('tottime', 'hhinc#4'): 996131.649172921, ('tottime', 'hhinc#5'): 191184.20323081187, ('tottime', 'hhinc#6'): 364196.75026433234, ('tottime', 'totcost'): -775245.3645765011, ('tottime', 'tottime'): 910724.9012464393, } assert dict(ll1.bhhh.unstack()) == approx(bhhh_correct) assert dict(ll2.bhhh.unstack()) == approx(bhhh_correct) dll_casewise_A = ll2.dll_casewise / j2.weight_normalization dll_casewise_B = np.asarray(dll_casewise_A) / j2.data_wt.values corrected_bhhh = pd.DataFrame( np.dot(dll_casewise_A.T, dll_casewise_B), index=ll2.dll.index, columns=ll2.dll.index, ) * j2.weight_normalization assert dict(ll1.bhhh.unstack()) == approx(dict(corrected_bhhh.unstack()))
def test_weighted_bhhh(mtc2): j1, j2 = mtc2 m5 = NumbaModel() from larch.roles import P, X, PX m5.utility_co[2] = P("ASC_SR2") + P("hhinc#2") * X("hhinc") m5.utility_co[3] = P("ASC_SR3P") + P("hhinc#3") * X("hhinc") m5.utility_co[4] = P("ASC_TRAN") + P("hhinc#4") * X("hhinc") m5.utility_co[5] = P("ASC_BIKE") + P("hhinc#5") * X("hhinc") m5.utility_co[6] = P("ASC_WALK") + P("hhinc#6") * X("hhinc") m5.utility_ca = PX("tottime") + PX("totcost") beta_in1 = { 'ASC_BIKE': -0.8523646111088327, 'ASC_SR2': -0.5233769323949348, 'ASC_SR3P': -2.3202089848081027, 'ASC_TRAN': -0.05615933557609158, 'ASC_WALK': 0.050082767550586924, 'hhinc#2': -0.001040241396513087, 'hhinc#3': 0.0031822969445656542, 'hhinc#4': -0.0017162484345735326, 'hhinc#5': -0.004071521055900851, 'hhinc#6': -0.0021316332241034445, 'totcost': -0.001336661560553717, 'tottime': -0.01862990704919887, } m5.dataframes = j1 m5.pf_sort() ll1 = m5.loglike(beta_in1) dll1 = m5.d_loglike(beta_in1, return_series=True) bhhh1 = m5.bhhh(beta_in1, return_dataframe=True) m5.dataframes = j2 m5.pf_sort() ll2 = m5.loglike(beta_in1) dll2 = m5.d_loglike(beta_in1, return_series=True) bhhh2 = m5.bhhh(beta_in1, return_dataframe=True) q1_dll = { 'ASC_BIKE': -518.3145850719714, 'ASC_SR2': 6659.9870966633935, 'ASC_SR3P': -702.5461471592637, 'ASC_TRAN': -2069.2556854096474, 'ASC_WALK': -680.4136747673049, 'hhinc#2': 390300.04704708763, 'hhinc#3': -44451.89987844542, 'hhinc#4': -117769.88300441334, 'hhinc#5': -29774.93396444093, 'hhinc#6': -36754.12651709895, 'totcost': -280658.27799924824, 'tottime': -66172.15328009706, } assert (j1.weight_normalization, j2.weight_normalization) == (3.0, 1.5) assert (ll1, ll2) == approx((-18829.858031378415, -18829.858031378433)) dict_ll1_dll = dict(dll1) dict_ll2_dll = dict(dll2) for k in q1_dll: assert q1_dll[k] == approx( dict_ll1_dll[k], rel=1e-5), f"{k} {q1_dll[k]} != {dict_ll1_dll[k]}" assert q1_dll[k] == approx( dict_ll2_dll[k], rel=1e-5), f"{k} {q1_dll[k]} != {dict_ll2_dll[k]}" bhhh_correct = { ('ASC_BIKE', 'ASC_BIKE'): 102.45820678523617, ('ASC_BIKE', 'ASC_SR2'): -285.118579955482, ('ASC_BIKE', 'ASC_SR3P'): 19.760852749005203, ('ASC_BIKE', 'ASC_TRAN'): 76.57398723818505, ('ASC_BIKE', 'ASC_WALK'): 32.34845311016433, ('ASC_BIKE', 'hhinc#2'): -16063.872652571783, ('ASC_BIKE', 'hhinc#3'): 1231.2989480753972, ('ASC_BIKE', 'hhinc#4'): 4436.148875125188, ('ASC_BIKE', 'hhinc#5'): 5322.601183863066, ('ASC_BIKE', 'hhinc#6'): 1870.2419763938155, ('ASC_BIKE', 'totcost'): 651.7010091466211, ('ASC_BIKE', 'tottime'): 3410.0934222585456, ('ASC_SR2', 'ASC_BIKE'): -285.118579955482, ('ASC_SR2', 'ASC_SR2'): 6156.860848428149, ('ASC_SR2', 'ASC_SR3P'): -412.00155512537174, ('ASC_SR2', 'ASC_TRAN'): -1312.7312255613908, ('ASC_SR2', 'ASC_WALK'): -461.36148965146094, ('ASC_SR2', 'hhinc#2'): 360960.5064929568, ('ASC_SR2', 'hhinc#3'): -25836.407171358598, ('ASC_SR2', 'hhinc#4'): -73800.95798232155, ('ASC_SR2', 'hhinc#5'): -16063.872652571783, ('ASC_SR2', 'hhinc#6'): -23821.20824758219, ('ASC_SR2', 'totcost'): -255314.72401330443, ('ASC_SR2', 'tottime'): -26043.72175056138, ('ASC_SR3P', 'ASC_BIKE'): 19.760852749005203, ('ASC_SR3P', 'ASC_SR2'): -412.00155512537174, ('ASC_SR3P', 'ASC_SR3P'): 194.01812799791645, ('ASC_SR3P', 'ASC_TRAN'): 75.72048947864153, ('ASC_SR3P', 'ASC_WALK'): 21.268891825845834, ('ASC_SR3P', 'hhinc#2'): -25836.407171358598, ('ASC_SR3P', 'hhinc#3'): 11951.689201021733, ('ASC_SR3P', 'hhinc#4'): 4654.093182472213, ('ASC_SR3P', 'hhinc#5'): 1231.2989480753972, ('ASC_SR3P', 'hhinc#6'): 1291.5421535124271, ('ASC_SR3P', 'totcost'): -873.8405986324893, ('ASC_SR3P', 'tottime'): 2847.414853230761, ('ASC_TRAN', 'ASC_BIKE'): 76.57398723818505, ('ASC_TRAN', 'ASC_SR2'): -1312.7312255613908, ('ASC_TRAN', 'ASC_SR3P'): 75.72048947864153, ('ASC_TRAN', 'ASC_TRAN'): 795.8802149505715, ('ASC_TRAN', 'ASC_WALK'): 106.98212315599287, ('ASC_TRAN', 'hhinc#2'): -73800.95798232155, ('ASC_TRAN', 'hhinc#3'): 4654.093182472214, ('ASC_TRAN', 'hhinc#4'): 43744.97724907039, ('ASC_TRAN', 'hhinc#5'): 4436.148875125188, ('ASC_TRAN', 'hhinc#6'): 5766.003794801968, ('ASC_TRAN', 'totcost'): -289.2663620264443, ('ASC_TRAN', 'tottime'): 17843.995404571946, ('ASC_WALK', 'ASC_BIKE'): 32.34845311016433, ('ASC_WALK', 'ASC_SR2'): -461.36148965146094, ('ASC_WALK', 'ASC_SR3P'): 21.268891825845834, ('ASC_WALK', 'ASC_TRAN'): 106.98212315599287, ('ASC_WALK', 'ASC_WALK'): 257.42682167907014, ('ASC_WALK', 'hhinc#2'): -23821.20824758219, ('ASC_WALK', 'hhinc#3'): 1291.5421535124271, ('ASC_WALK', 'hhinc#4'): 5766.003794801967, ('ASC_WALK', 'hhinc#5'): 1870.2419763938155, ('ASC_WALK', 'hhinc#6'): 12476.241347103956, ('ASC_WALK', 'totcost'): -4472.049603002317, ('ASC_WALK', 'tottime'): 7147.124392574634, ('hhinc#2', 'ASC_BIKE'): -16063.872652571783, ('hhinc#2', 'ASC_SR2'): 360960.5064929568, ('hhinc#2', 'ASC_SR3P'): -25836.407171358598, ('hhinc#2', 'ASC_TRAN'): -73800.95798232155, ('hhinc#2', 'ASC_WALK'): -23821.20824758219, ('hhinc#2', 'hhinc#2'): 27739015.863625936, ('hhinc#2', 'hhinc#3'): -2107887.1245679897, ('hhinc#2', 'hhinc#4'): -5551797.986970257, ('hhinc#2', 'hhinc#5'): -1180261.954185782, ('hhinc#2', 'hhinc#6'): -1731206.5786703676, ('hhinc#2', 'totcost'): -15915701.570008647, ('hhinc#2', 'tottime'): -1404099.9397647786, ('hhinc#3', 'ASC_BIKE'): 1231.2989480753972, ('hhinc#3', 'ASC_SR2'): -25836.407171358598, ('hhinc#3', 'ASC_SR3P'): 11951.689201021733, ('hhinc#3', 'ASC_TRAN'): 4654.093182472214, ('hhinc#3', 'ASC_WALK'): 1291.5421535124271, ('hhinc#3', 'hhinc#2'): -2107887.1245679897, ('hhinc#3', 'hhinc#3'): 985365.3310746389, ('hhinc#3', 'hhinc#4'): 365082.18492341647, ('hhinc#3', 'hhinc#5'): 96863.5554530797, ('hhinc#3', 'hhinc#6'): 105646.64587551638, ('hhinc#3', 'totcost'): -18197.967760858926, ('hhinc#3', 'tottime'): 173393.88742844874, ('hhinc#4', 'ASC_BIKE'): 4436.148875125188, ('hhinc#4', 'ASC_SR2'): -73800.95798232155, ('hhinc#4', 'ASC_SR3P'): 4654.093182472213, ('hhinc#4', 'ASC_TRAN'): 43744.97724907039, ('hhinc#4', 'ASC_WALK'): 5766.003794801967, ('hhinc#4', 'hhinc#2'): -5551797.986970257, ('hhinc#4', 'hhinc#3'): 365082.18492341647, ('hhinc#4', 'hhinc#4'): 3238425.3752979557, ('hhinc#4', 'hhinc#5'): 328415.2849030458, ('hhinc#4', 'hhinc#6'): 431510.210405761, ('hhinc#4', 'totcost'): -203942.90089356547, ('hhinc#4', 'tottime'): 996131.6491729214, ('hhinc#5', 'ASC_BIKE'): 5322.601183863066, ('hhinc#5', 'ASC_SR2'): -16063.872652571783, ('hhinc#5', 'ASC_SR3P'): 1231.2989480753972, ('hhinc#5', 'ASC_TRAN'): 4436.148875125188, ('hhinc#5', 'ASC_WALK'): 1870.2419763938155, ('hhinc#5', 'hhinc#2'): -1180261.954185782, ('hhinc#5', 'hhinc#3'): 96863.5554530797, ('hhinc#5', 'hhinc#4'): 328415.2849030458, ('hhinc#5', 'hhinc#5'): 376816.6222240454, ('hhinc#5', 'hhinc#6'): 139543.81527069444, ('hhinc#5', 'totcost'): 64871.45953365492, ('hhinc#5', 'tottime'): 191184.20323081187, ('hhinc#6', 'ASC_BIKE'): 1870.2419763938155, ('hhinc#6', 'ASC_SR2'): -23821.20824758219, ('hhinc#6', 'ASC_SR3P'): 1291.5421535124271, ('hhinc#6', 'ASC_TRAN'): 5766.003794801968, ('hhinc#6', 'ASC_WALK'): 12476.241347103956, ('hhinc#6', 'hhinc#2'): -1731206.5786703676, ('hhinc#6', 'hhinc#3'): 105646.64587551638, ('hhinc#6', 'hhinc#4'): 431510.210405761, ('hhinc#6', 'hhinc#5'): 139543.81527069444, ('hhinc#6', 'hhinc#6'): 872604.6192807176, ('hhinc#6', 'totcost'): -95081.80795513398, ('hhinc#6', 'tottime'): 364196.75026433205, ('totcost', 'ASC_BIKE'): 651.7010091466211, ('totcost', 'ASC_SR2'): -255314.72401330443, ('totcost', 'ASC_SR3P'): -873.8405986324893, ('totcost', 'ASC_TRAN'): -289.2663620264443, ('totcost', 'ASC_WALK'): -4472.049603002317, ('totcost', 'hhinc#2'): -15915701.570008647, ('totcost', 'hhinc#3'): -18197.967760858926, ('totcost', 'hhinc#4'): -203942.90089356547, ('totcost', 'hhinc#5'): 64871.45953365492, ('totcost', 'hhinc#6'): -95081.80795513398, ('totcost', 'totcost'): 67516567.00440338, ('totcost', 'tottime'): -775245.3645765022, ('tottime', 'ASC_BIKE'): 3410.0934222585456, ('tottime', 'ASC_SR2'): -26043.72175056138, ('tottime', 'ASC_SR3P'): 2847.414853230761, ('tottime', 'ASC_TRAN'): 17843.995404571946, ('tottime', 'ASC_WALK'): 7147.124392574634, ('tottime', 'hhinc#2'): -1404099.9397647786, ('tottime', 'hhinc#3'): 173393.88742844874, ('tottime', 'hhinc#4'): 996131.6491729214, ('tottime', 'hhinc#5'): 191184.20323081187, ('tottime', 'hhinc#6'): 364196.75026433205, ('tottime', 'totcost'): -775245.3645765022, ('tottime', 'tottime'): 910724.9012464394, } assert dict(bhhh1.unstack()) == approx(bhhh_correct) assert dict(bhhh2.unstack()) == approx(bhhh_correct) assert m5.check_d_loglike().data.similarity.min() > 4
def test_dataframes_nl5(mtc): m5 = NumbaModel() m5.utility_co[2] = P("ASC_SR2") + P("hhinc#2") * X("hhinc") m5.utility_co[3] = P("ASC_SR3P") + P("hhinc#3") * X("hhinc") m5.utility_co[4] = P("ASC_TRAN") + P("hhinc#4") * X("hhinc") m5.utility_co[5] = P("ASC_BIKE") + P("hhinc#5") * X("hhinc") m5.utility_co[6] = P("ASC_WALK") + P("hhinc#6") * X("hhinc") m5.utility_ca = PX("tottime") + PX("totcost") m5.dataframes = mtc m5.graph.add_node(9, children=(5, 6), parameter='MU_NonMotorized') beta_in1 = { 'ASC_BIKE': -0.8523646111088327, 'ASC_SR2': -0.5233769323949348, 'ASC_SR3P': -2.3202089848081027, 'ASC_TRAN': -0.05615933557609158, 'ASC_WALK': 0.050082767550586924, 'hhinc#2': -0.001040241396513087, 'hhinc#3': 0.0031822969445656542, 'hhinc#4': -0.0017162484345735326, 'hhinc#5': -0.004071521055900851, 'hhinc#6': -0.0021316332241034445, 'totcost': -0.001336661560553717, 'tottime': -0.01862990704919887, } ll2 = m5.loglike2(beta_in1, return_series=True) q1_dll = { 'ASC_BIKE': -139.43832, 'ASC_SR2': -788.00574, 'ASC_SR3P': -126.84879, 'ASC_TRAN': -357.75186, 'ASC_WALK': -116.137886, 'hhinc#2': -46416.28, 'hhinc#3': -8353.63, 'hhinc#4': -21409.012, 'hhinc#5': -8299.654, 'hhinc#6': -7395.375, 'totcost': 39520.043, 'tottime': -26556.303, } assert approx(ll2.ll) == -4930.3212890625 dict_ll2_dll = dict(ll2.dll) for k in q1_dll: assert q1_dll[k] == approx( dict_ll2_dll[k], rel=1e-5), f"{k} {q1_dll[k]} != {dict_ll2_dll[k]}" beta_in1 = { 'ASC_BIKE': -0.8523646111088327, 'ASC_SR2': -0.5233769323949348, 'ASC_SR3P': -2.3202089848081027, 'ASC_TRAN': -0.05615933557609158, 'ASC_WALK': 0.050082767550586924, 'hhinc#2': -0.001040241396513087, 'hhinc#3': 0.0031822969445656542, 'hhinc#4': -0.0017162484345735326, 'hhinc#5': -0.004071521055900851, 'hhinc#6': -0.0021316332241034445, 'totcost': -0.001336661560553717, 'tottime': -0.01862990704919887, 'MU_NonMotorized': 0.5, } ll2b = m5.loglike2(beta_in1, return_series=True) q1_dllb = { 'ASC_BIKE': -94.071343, 'ASC_SR2': -800.092341, 'ASC_SR3P': -129.354567, 'ASC_TRAN': -369.808551, 'ASC_WALK': -114.786728, 'MU_NonMotorized': -34.816070, 'hhinc#2': -47089.611079, 'hhinc#3': -8505.116916, 'hhinc#4': -22071.859018, 'hhinc#5': -5844.969336, 'hhinc#6': -7168.859044, 'totcost': 37322.528282, 'tottime': -26479.290942, } assert -4897.764630665653 == approx(ll2b.ll) dict_ll2b_dll = dict(ll2b.dll) for k in q1_dllb: assert q1_dllb[k] == approx( dict_ll2b_dll[k], rel=1e-5), f"{k} {q1_dllb[k]} != {dict_ll2b_dll[k]}" print(m5.check_d_loglike().data['similarity'].min()) chk = m5.check_d_loglike() assert chk.data['similarity'].min() > 4
def qmnl_straw_man_model_1(): from larch.roles import P, X altcodes = (1, 2, 3, 4, 5, 6) from larch.data_services.examples import MTC dt = MTC() p = Model(parameters=[], alts=altcodes, dataservice=dt, graph=None) from larch.roles import P, X p.utility_ca = (+P('tottime') * X('tottime') + P('totcost') * X('totcost')) p.utility_co = { 2: (P('ASC#2') * X('1') + P('hhinc#2') * X('hhinc')), 3: (P('ASC#3') * X('1') + P('hhinc#3') * X('hhinc')), 4: (P('ASC#4') * X('1') + P('hhinc#4') * X('hhinc')), 5: (P('ASC#5') * X('1') + P('hhinc#5') * X('hhinc')), 6: (P('ASC#6') * X('1') + P('hhinc#6') * X('hhinc')), } p.quantity_ca = (+P("FakeSizeAlt") * X('altnum+1') + P("FakeSizeIvtt") * X('ivtt+1')) p.availability_var = '_avail_' p.choice_ca_var = '_choice_' p.load_data() return p
def test_eville_mode_with_dataset(): pytest.importorskip("sharrow") from larch.examples import EXAMPVILLE tree = EXAMPVILLE('datatree') DA = 1 SR = 2 Walk = 3 Bike = 4 Transit = 5 m = NumbaModel( alts={ DA: 'DA', SR: 'SR', Walk: 'Walk', Bike: 'Bike', Transit: 'Transit', }, datatree=tree, ) m.title = "Exampville Work Tour Mode Choice v1" m.utility_co[DA] = ( +P.InVehTime * X("od.AUTO_TIME + do.AUTO_TIME") + P.Cost * X("od.AUTO_COST + do.AUTO_COST") # dollars per mile ) m.utility_co[SR] = ( +P.ASC_SR + P.InVehTime * X("od.AUTO_TIME + do.AUTO_TIME") + P.Cost * X("od.AUTO_COST + do.AUTO_COST") * 0.5 # dollars per mile, half share + P("LogIncome:SR") * X("log(INCOME)")) m.utility_co[Walk] = (+P.ASC_Walk + P.NonMotorTime * X("od.WALK_TIME + do.WALK_TIME") + P("LogIncome:Walk") * X("log(INCOME)")) m.utility_co[Bike] = (+P.ASC_Bike + P.NonMotorTime * X("od.BIKE_TIME + do.BIKE_TIME") + P("LogIncome:Bike") * X("log(INCOME)")) m.utility_co[Transit] = ( +P.ASC_Transit + P.InVehTime * X("od.TRANSIT_IVTT + do.TRANSIT_IVTT") + P.OutVehTime * X("od.TRANSIT_OVTT + do.TRANSIT_OVTT") + P.Cost * X("od.TRANSIT_FARE + do.TRANSIT_FARE") + P("LogIncome:Transit") * X('log(INCOME)')) Car = m.graph.new_node(parameter='Mu:Car', children=[DA, SR], name='Car') NonMotor = m.graph.new_node(parameter='Mu:NonMotor', children=[Walk, Bike], name='NonMotor') Motor = m.graph.new_node(parameter='Mu:Motor', children=[Car, Transit], name='Motor') m.choice_co_code = 'TOURMODE' m.availability_co_vars = { DA: 'AGE >= 16', SR: '1', Walk: 'WALK_TIME < 60', Bike: 'BIKE_TIME < 60', Transit: 'TRANSIT_FARE>0', } assert m.loglike() == approx(-28846.81581153095) assert m.dataflows.keys() == {'co', 'avail_co'} assert m.d_loglike() == approx( np.array([ -5.02935000e+03, -2.69235000e+03, -1.72110000e+03, -2.21118333e+03, 1.67050996e+04, 1.26952101e+05, -5.50687172e+04, -3.03043210e+04, -1.93304978e+04, -2.41203790e+04, 5.82518580e+03, 2.92870835e+02, -3.31973600e+03, -3.47182502e+05, -2.26234434e+05 ])) m.set_cap(30) r = m.maximize_loglike(method='slsqp') assert dict(r.x) == approx( { 'ASC_Bike': 1.0207805052947376, 'ASC_SR': 2.9895850624870013, 'ASC_Transit': 8.508746668124973, 'ASC_Walk': 7.473491883981414, 'Cost': -0.17750345102327197, 'InVehTime': -0.06760741744874971, 'LogIncome:Bike': -0.3648653520247778, 'LogIncome:SR': -0.4222047281799176, 'LogIncome:Transit': -0.6960684260831979, 'LogIncome:Walk': -0.4548368480289394, 'Mu:Car': 0.5466601043649147, 'Mu:Motor': 0.9540629350784797, 'Mu:NonMotor': 0.8636508452469879, 'NonMotorTime': -0.1268142189962758, 'OutVehTime': -0.14752266135040631, }, rel=1e-5) assert r.loglike == approx(-8047.006193851376) worktours = tree.query_cases('TOURPURP==1') m.datatree = worktours assert m.loglike() == approx(-3527.6797690247113) m.float_dtype = np.float32 assert m.loglike() == approx(-3527.68115234375) assert m.n_cases == 7564 m.datatree = tree assert m.loglike() == approx(-8047.006193851376) assert m.n_cases == 20739