Beispiel #1
0
    def __init__(self,
                 input_shape,
                 output_dim,
                 hidden_dim,
                 hidden_nonlinearity=LN.rectify,
                 output_nonlinearity=None,
                 output_W_init=LI.GlorotUniform(),
                 name=None,
                 input_var=None,
                 input_layer=None,
                 trunc_steps=20,
                 output_gain=1):
        if input_layer is None:
            l_in = L.InputLayer(shape=(None, None) + input_shape,
                                input_var=input_var,
                                name="input")
        else:
            l_in = input_layer
        l_step_input = L.InputLayer(shape=(None, ) + input_shape)
        l_step_prev_hidden = L.InputLayer(shape=(None, hidden_dim))
        l_gru = GRULayer(l_in,
                         num_units=hidden_dim,
                         hidden_nonlinearity=hidden_nonlinearity,
                         hidden_init_trainable=False,
                         trunc_steps=trunc_steps)
        l_gru_flat = L.ReshapeLayer(l_gru, shape=(-1, hidden_dim))
        l_output_flat = L.DenseLayer(
            l_gru_flat,
            num_units=output_dim,
            nonlinearity=output_nonlinearity,
            W=output_W_init,
        )
        l_output = OpLayer(
            l_output_flat,
            op=lambda flat_output, l_input: flat_output.reshape(
                (l_input.shape[0], l_input.shape[1], -1)),
            shape_op=lambda flat_output_shape, l_input_shape:
            (l_input_shape[0], l_input_shape[1], flat_output_shape[-1]),
            extras=[l_in])
        l_step_hidden = l_gru.get_step_layer(l_step_input, l_step_prev_hidden)
        l_step_output = L.DenseLayer(
            l_step_hidden,
            num_units=output_dim,
            nonlinearity=output_nonlinearity,
            W=l_output_flat.W,
            b=l_output_flat.b,
        )

        self._l_in = l_in
        self._hid_init_param = l_gru.h0
        self._l_gru = l_gru
        self._l_out = l_output
        self._l_step_input = l_step_input
        self._l_step_prev_hidden = l_step_prev_hidden
        self._l_step_hidden = l_step_hidden
        self._l_step_output = l_step_output
Beispiel #2
0
    def __init__(self,
                 output_dim,
                 hidden_sizes,
                 hidden_nonlinearity,
                 output_nonlinearity,
                 hidden_W_init=LI.GlorotUniform(),
                 hidden_b_init=LI.Constant(0.),
                 output_W_init=LI.GlorotUniform(),
                 output_b_init=LI.Constant(0.),
                 name=None,
                 input_var=None,
                 input_layer=None,
                 input_shape=None,
                 batch_norm=False):

        Serializable.quick_init(self, locals())

        if name is None:
            prefix = ""
        else:
            prefix = name + "_"

        if input_layer is None:
            l_in = L.InputLayer(shape=(None, ) + input_shape,
                                input_var=input_var)
        else:
            l_in = input_layer
        self._layers = [l_in]
        l_hid = l_in
        for idx, hidden_size in enumerate(hidden_sizes):
            l_hid = L.DenseLayer(
                l_hid,
                num_units=hidden_size,
                nonlinearity=hidden_nonlinearity,
                name="%shidden_%d" % (prefix, idx),
                W=hidden_W_init,
                b=hidden_b_init,
            )
            if batch_norm:
                l_hid = L.batch_norm(l_hid)
            self._layers.append(l_hid)

        l_out = L.DenseLayer(
            l_hid,
            num_units=output_dim,
            nonlinearity=output_nonlinearity,
            name="%soutput" % (prefix, ),
            W=output_W_init,
            b=output_b_init,
        )
        self._layers.append(l_out)
        self._l_in = l_in
        self._l_out = l_out
        # self._input_var = l_in.input_var
        self._output = L.get_output(l_out)
        LasagnePowered.__init__(self, [l_out])
Beispiel #3
0
    def _build_network(self, input_var):
        """Builds actor network, scaling outputs based on action bounds."""

        tanh = lasagne.nonlinearities.ScaledTanH(1,
                                                 scale_out=self.action_scale)

        network = nn.InputLayer((None, ) + self.state_shape, input_var)
        network = nn.DenseLayer(network, 30, W_init, b_init, relu)
        network = nn.DenseLayer(network, 30, W_init, b_init, relu)
        return nn.DenseLayer(network, self.num_actions, W_out, b_out, tanh)
def build_pi_model():

    log.i('BUILDING RASBPERRY PI MODEL...')

    # Random Seed
    lasagne_random.set_rng(cfg.getRandomState())

    # Input layer for images
    net = l.InputLayer((None, cfg.IM_DIM, cfg.IM_SIZE[1], cfg.IM_SIZE[0]))

    # Convolutinal layer groups
    for i in range(len(cfg.FILTERS)):

        # 3x3 Convolution + Stride
        net = batch_norm(
            l.Conv2DLayer(net,
                          num_filters=cfg.FILTERS[i],
                          filter_size=cfg.KERNEL_SIZES[i],
                          num_groups=cfg.NUM_OF_GROUPS[i],
                          pad='same',
                          stride=2,
                          W=initialization(cfg.NONLINEARITY),
                          nonlinearity=nonlinearity(cfg.NONLINEARITY)))

        log.i(('\tGROUP', i + 1, 'OUT SHAPE:', l.get_output_shape(net)))

    # Fully connected layers + dropout layers
    net = l.DenseLayer(net,
                       cfg.DENSE_UNITS,
                       nonlinearity=nonlinearity(cfg.NONLINEARITY),
                       W=initialization(cfg.NONLINEARITY))
    net = l.DropoutLayer(net, p=cfg.DROPOUT)

    net = l.DenseLayer(net,
                       cfg.DENSE_UNITS,
                       nonlinearity=nonlinearity(cfg.NONLINEARITY),
                       W=initialization(cfg.NONLINEARITY))
    net = l.DropoutLayer(net, p=cfg.DROPOUT)

    # Classification Layer (Softmax)
    net = l.DenseLayer(net,
                       len(cfg.CLASSES),
                       nonlinearity=nonlinearity('softmax'),
                       W=initialization('softmax'))

    log.i(("\tFINAL NET OUT SHAPE:", l.get_output_shape(net)))
    log.i("...DONE!")

    # Model stats
    log.i(("MODEL HAS",
           (sum(hasattr(layer, 'W')
                for layer in l.get_all_layers(net))), "WEIGHTED LAYERS"))
    log.i(("MODEL HAS", l.count_params(net), "PARAMS"))

    return net
Beispiel #5
0
    def __init__(self, incomings, num_units_hidden_common, dim_z, beta):
        '''
         params:
             incomings: input layers, [image, label]
             num_units_hidden_common: num_units_hidden for all BasicLayers.
             dim_z: the dimension of z and num_units_output for encoders BaiscLayer
        '''

        super(SemiVAE, self).__init__(incomings)
        self.mrg_srng = MRG_RandomStreams()

        # random generator
        self.incomings = incomings
        self.num_classes = incomings[1].output_shape[1]
        self.num_units_hidden_common = num_units_hidden_common
        self.dim_z = dim_z
        self.beta = beta

        self.concat_xy = layers.ConcatLayer(self.incomings, axis=1)

        self.encoder = BasicLayer(
            self.concat_xy,
            num_units_hidden=self.num_units_hidden_common,
        )

        self.encoder_mu = layers.DenseLayer(
            self.encoder, self.dim_z, nonlinearity=nonlinearities.identity)

        self.encoder_log_var = layers.DenseLayer(
            self.encoder, self.dim_z, nonlinearity=nonlinearities.identity)

        [image_input, label_input] = self.incomings
        self.dim_image = image_input.output_shape[1]
        print('dim_image: ', self.dim_image)

        # merge encoder_mu and encoder_log_var to get z.
        self.sampler = SamplerLayer([self.encoder_mu, self.encoder_log_var])

        self.concat_yz = layers.ConcatLayer([label_input, self.sampler],
                                            axis=1)
        self.decoder = BasicLayer(
            self.concat_yz, num_units_hidden=self.num_units_hidden_common)

        self.decoder_x = layers.DenseLayer(self.decoder,
                                           num_units=self.dim_image,
                                           nonlinearity=nonlinearities.sigmoid)

        self.classifier_helper = BasicLayer(
            self.incomings[0], num_units_hidden=self.num_units_hidden_common)

        self.classifier = layers.DenseLayer(
            self.classifier_helper,
            num_units=self.num_classes,
            nonlinearity=nonlinearities.softmax,
        )
Beispiel #6
0
def arch_class_00(dim_desc, dim_labels, param_arch, logger):
    logger.info('Architecture:')
    # input layers
    desc = LL.InputLayer(shape=(None, dim_desc))
    patch_op = LL.InputLayer(input_var=Tsp.csc_fmatrix('patch_op'),
                             shape=(None, None))
    logger.info('   input  : dim = %d' % dim_desc)
    # layer 1: dimensionality reduction to 16
    n_dim = 16
    net = LL.DenseLayer(desc, n_dim)
    logger.info('   layer 1: FC%d' % n_dim)
    # layer 2: anisotropic convolution layer with 16 filters
    n_filters = 16
    net = CL.GCNNLayer([net, patch_op], n_filters, nrings=5, nrays=16)
    string = '   layer 2: IC%d' % n_filters
    if param_arch['flag_batchnorm'] is True:
        net = LL.batch_norm(net)
        string = string + ' + batch normalization'
    logger.info(string)
    # layer 3: anisotropic convolution layer with 32 filters
    n_filters = 32
    net = CL.GCNNLayer([net, patch_op], n_filters, nrings=5, nrays=16)
    string = '   layer 3: IC%d' % n_filters
    if param_arch['flag_batchnorm'] is True:
        net = LL.batch_norm(net)
        string = string + ' + batch normalization'
    logger.info(string)
    # layer 4: anisotropic convolution layer with 64 filters
    n_filters = 64
    net = CL.GCNNLayer([net, patch_op], n_filters, nrings=5, nrays=16)
    string = '   layer 4: IC%d' % n_filters
    if param_arch['flag_batchnorm'] is True:
        net = LL.batch_norm(net)
        string = string + ' + batch normalization'
    logger.info(string)
    # layer 5: fully connected layer with 256 filters
    n_dim = 256
    net = LL.DenseLayer(net, n_dim)
    string = '   layer 5: FC%d' % n_dim
    if param_arch['flag_batchnorm'] is True:
        net = LL.batch_norm(net)
        string = string + ' + batch normalization'
    logger.info(string)
    # layer 6: softmax layer producing a probability on the labels
    if param_arch['flag_nonlinearity'] == 'softmax':
        cla = LL.DenseLayer(net, dim_labels, nonlinearity=LN.softmax)
        string = '   layer 6: softmax'
    elif param_arch['flag_nonlinearity'] == 'log_softmax':
        cla = LL.DenseLayer(net, dim_labels, nonlinearity=log_softmax)
        string = '   layer 6: log-softmax'
    else:
        raise Exception('[e] the chosen non-linearity is not supported!')
    logger.info(string)
    # outputs
    return desc, patch_op, cla, net, logger
Beispiel #7
0
def fcn_transfer(params):
    """"""
    assert 'inputs' in params
    layers = L.InputLayer((None, 256 * len(params['inputs'])))
    layers = L.dropout(layers)

    layers = L.DenseLayer(layers, 1024, nonlinearity=nl.elu)
    layers = L.dropout(layers)

    layers = L.DenseLayer(layers, 16, nonlinearity=nl.softmax)
    return layers
Beispiel #8
0
    def build_instrument_model(self, n_vars, **kwargs):

        targets = TT.vector()
        instrument_vars = TT.matrix()

        instruments = layers.InputLayer((None, n_vars), instrument_vars)
        instruments = layers.DropoutLayer(instruments, p=0.2)

        dense_layer = layers.DenseLayer(instruments,
                                        kwargs['dense_size'],
                                        nonlinearity=nonlinearities.tanh)
        dense_layer = layers.DropoutLayer(dense_layer, p=0.2)

        for _ in xrange(kwargs['n_dense_layers'] - 1):
            dense_layer = layers.DenseLayer(dense_layer,
                                            kwargs['dense_size'],
                                            nonlinearity=nonlinearities.tanh)
            dense_layer = layers.DropoutLayer(dense_layer, p=0.5)

        self.instrument_output = layers.DenseLayer(
            dense_layer, 1, nonlinearity=nonlinearities.linear)
        init_params = layers.get_all_param_values(self.instrument_output)
        prediction = layers.get_output(self.instrument_output,
                                       deterministic=False)
        test_prediction = layers.get_output(self.instrument_output,
                                            deterministic=True)

        # flexible here, endog variable can be categorical, continuous, etc.
        l2_cost = regularization.regularize_network_params(
            self.instrument_output, regularization.l2)
        loss = objectives.squared_error(
            prediction.flatten(), targets.flatten()).mean() + 1e-4 * l2_cost
        loss_total = objectives.squared_error(prediction.flatten(),
                                              targets.flatten()).mean()

        params = layers.get_all_params(self.instrument_output, trainable=True)
        param_updates = updates.adadelta(loss, params)

        self._instrument_train_fn = theano.function([
            targets,
            instrument_vars,
        ],
                                                    loss,
                                                    updates=param_updates)

        self._instrument_loss_fn = theano.function([
            targets,
            instrument_vars,
        ], loss_total)

        self._instrument_output_fn = theano.function([instrument_vars],
                                                     test_prediction)

        return init_params
def buildModel():

    print "BUILDING MODEL TYPE..."

    #default settings
    filters = 16
    first_stride = 2
    last_filter_multiplier = 4

    #input layer
    net = l.InputLayer((None, IM_DIM, IM_SIZE[1], IM_SIZE[0]))

    #conv layers
    net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters     , filter_size=7, pad='same', stride=first_stride, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
    net = l.MaxPool2DLayer(net, pool_size=2)
    
    net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * 2   , filter_size=5, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
    net = l.MaxPool2DLayer(net, pool_size=2)
  
    net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * 4 , filter_size=3, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
    net = l.MaxPool2DLayer(net, pool_size=2)
    net = l.DropoutLayer(net, DROPOUT)

    #net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * 8 , filter_size=3, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
    #net = l.MaxPool2DLayer(net, pool_size=2)

    #net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * 16 , filter_size=3, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
    #net = l.MaxPool2DLayer(net, pool_size=2)

    #net = l.batch_norm(l.Conv2DLayer(net, num_filters=filters * 32 , filter_size=7, pad='same', stride=1, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
    #net = l.MaxPool2DLayer(net, pool_size=2)


    #print "\tFINAL POOL OUT SHAPE:", l.get_output_shape(net)

    #dense layers
    net = l.batch_norm(l.DenseLayer(net, 512, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
    net = l.DropoutLayer(net, DROPOUT)
    net = l.batch_norm(l.DenseLayer(net, 512, W=init.HeNormal(gain=INIT_GAIN), nonlinearity=NONLINEARITY))
    net = l.DropoutLayer(net, DROPOUT)

    #Classification Layer
    if MULTI_LABEL:
        net = l.DenseLayer(net, NUM_CLASSES, nonlinearity=nonlinearities.sigmoid, W=init.HeNormal(gain=1))
    else:
        net = l.DenseLayer(net, NUM_CLASSES, nonlinearity=nonlinearities.softmax, W=init.HeNormal(gain=1))

    print "...DONE!"

    #model stats
    print "MODEL HAS", (sum(hasattr(layer, 'W') for layer in l.get_all_layers(net))), "WEIGHTED LAYERS"
    print "MODEL HAS", l.count_params(net), "PARAMS"

    return net
def get_model(inp, patch_op):

    icnn1 = batch_norm(utils_lasagne.GCNNLayer([inp, patch_op], 16, nrings=5, nrays=16))
    ffn1 = LL.DenseLayer(icnn1, 512)
    icnn2 = batch_norm(utils_lasagne.GCNNLayer([icnn1, patch_op], 32, nrings=5, nrays=16))
    ffn2 = LL.DenseLayer(icnn2, 512)
    icnn3 = batch_norm(utils_lasagne.GCNNLayer([icnn2, patch_op], 64, nrings=5, nrays=16))
    ffn3 = LL.DenseLayer(icnn3, 512)
    ffn4 = LL.ConcatLayer([inp,ffn1,ffn2,ffn3],axis=1, cropping=None);
    ffn = LL.DenseLayer(ffn4, nclasses, nonlinearity=utils_lasagne.log_softmax)
    return ffn
Beispiel #11
0
    def __init__(self, args):

        self.args = args

        rng = np.random.RandomState(self.args.seed) # fixed random seeds
        theano_rng = MRG_RandomStreams(rng.randint(2 ** 15))
        lasagne.random.set_rng(np.random.RandomState(rng.randint(2 ** 15)))
        data_rng = np.random.RandomState(self.args.seed_data)

        ''' specify pre-trained generator E '''
        self.enc_layers = [LL.InputLayer(shape=(None, 3, 32, 32), input_var=None)]
        enc_layer_conv1 = dnn.Conv2DDNNLayer(self.enc_layers[-1], 64, (5,5), pad=0, stride=1, W=Normal(0.01), nonlinearity=nn.relu)
        self.enc_layers.append(enc_layer_conv1)
        enc_layer_pool1 = LL.MaxPool2DLayer(self.enc_layers[-1], pool_size=(2, 2))
        self.enc_layers.append(enc_layer_pool1)
        enc_layer_conv2 = dnn.Conv2DDNNLayer(self.enc_layers[-1], 128, (5,5), pad=0, stride=1, W=Normal(0.01), nonlinearity=nn.relu)
        self.enc_layers.append(enc_layer_conv2)
        enc_layer_pool2 = LL.MaxPool2DLayer(self.enc_layers[-1], pool_size=(2, 2))
        self.enc_layers.append(enc_layer_pool2)
        self.enc_layer_fc3 = LL.DenseLayer(self.enc_layers[-1], num_units=256, nonlinearity=T.nnet.relu)
        self.enc_layers.append(self.enc_layer_fc3)
        self.enc_layer_fc4 = LL.DenseLayer(self.enc_layers[-1], num_units=10, nonlinearity=T.nnet.softmax)
        self.enc_layers.append(self.enc_layer_fc4)


        ''' load pretrained weights for encoder '''
        weights_toload = np.load('pretrained/encoder.npz')
        weights_list_toload = [weights_toload['arr_{}'.format(k)] for k in range(len(weights_toload.files))]
        LL.set_all_param_values(self.enc_layers[-1], weights_list_toload)


        ''' input tensor variables '''
        #self.G_weights
        #self.D_weights
        self.dummy_input = T.scalar()
        self.G_layers = []
        self.z = theano_rng.uniform(size=(self.args.batch_size, self.args.z0dim))
        self.x = T.tensor4()
        self.meanx = T.tensor3()
        self.Gen_x = T.tensor4() 
        self.D_layers = []
        self.D_layer_adv = [] 
        self.D_layer_z_recon = []
        self.gen_lr = T.scalar() # learning rate
        self.disc_lr = T.scalar() # learning rate
        self.y = T.ivector()
        self.y_1hot = T.matrix()
        self.Gen_x_list = []
        self.y_recon_list = []
        self.mincost = T.scalar()
        #self.enc_layer_fc3 = self.get_enc_layer_fc3()

        self.real_fc3 = LL.get_output(self.enc_layer_fc3, self.x, deterministic=True)
Beispiel #12
0
def build_network(input_var, image_size=28, output_dim=10):

    nonlin = lasagne.nonlinearities.rectify
    W_init = lasagne.init.GlorotUniform()
    b_init = lasagne.init.Constant(0.)

    input_shape = (None, 1, image_size, image_size)

    network = nn.InputLayer(input_shape, input_var)

    network = nn.Conv2DLayer(network,
                             num_filters=64,
                             filter_size=(3, 3),
                             nonlinearity=nonlin,
                             W=W_init,
                             b=b_init)
    network = nn.Conv2DLayer(network,
                             num_filters=64,
                             filter_size=(3, 3),
                             nonlinearity=nonlin,
                             W=W_init,
                             b=b_init)
    network = nn.MaxPool2DLayer(network, pool_size=(2, 2))

    network = nn.Conv2DLayer(network,
                             num_filters=128,
                             filter_size=(3, 3),
                             W=W_init,
                             b=b_init,
                             nonlinearity=nonlin)
    network = nn.Conv2DLayer(network,
                             num_filters=128,
                             filter_size=(3, 3),
                             W=W_init,
                             b=b_init,
                             nonlinearity=nonlin)
    network = nn.MaxPool2DLayer(network, pool_size=(2, 2))

    network = nn.dropout(network, p=0.5)
    network = nn.DenseLayer(network,
                            num_units=256,
                            W=W_init,
                            b=b_init,
                            nonlinearity=nonlin)

    network = nn.dropout(network, p=0.5)
    network = nn.DenseLayer(network,
                            num_units=output_dim,
                            W=W_init,
                            b=b_init,
                            nonlinearity=None)

    return network
def test_stochastic_layer_network():
    learning_rate = 0.1
    momentum = 0.9
    num_epoch = 1000
    input = T.fmatrix('input')
    output = T.fmatrix('output')
    print 'FF-Layer: (Batch_size, n_features)'
    print 'Building stochastic layer model'
    l_in = L.InputLayer(shape=(1, 10), input_var=input)
    l_2 = L.DenseLayer(l_in,
                       num_units=10,
                       nonlinearity=lasagne.nonlinearities.softmax,
                       W=lasagne.init.Constant(0.))
    print 'Input Layer shape:  ', L.get_output_shape(l_in)
    print 'Dense Layer shape: ', L.get_output_shape(l_2)
    l_stochastic_layer = StochasticLayer(l_2, estimator='ST')
    print 'Stochastic Layer shape:  ', L.get_output_shape(l_stochastic_layer)
    l_out = L.DenseLayer(l_stochastic_layer,
                         num_units=10,
                         b=lasagne.init.Constant(0.))
    print 'Final Dense Layer shape: ', L.get_output_shape(l_out)
    network_output = L.get_output(l_out)
    print 'Building loss function...'
    loss = lasagne.objectives.squared_error(network_output, output)
    loss = loss.mean()
    params = L.get_all_params(l_out, trainable=True)
    updates = nesterov_momentum(loss, params, learning_rate, momentum)
    train = theano.function([input, output],
                            loss,
                            updates=updates,
                            allow_input_downcast=True)
    output_fn = theano.function([input],
                                network_output,
                                allow_input_downcast=True)

    test_X = np.ones((1, 10))
    test_Y = np.ones((1, 10))
    losses = []
    mean_losses = []
    for epoch in range(num_epoch):
        print 'Epoch number: ', epoch
        losses.append(train(test_X, test_Y))
        print 'epoch {} mean loss {}'.format(epoch, np.mean(losses))
        print 'Current Output: ', output_fn(test_X)
        mean_losses.append(np.mean(losses))

    plt.title("Mean loss")
    plt.xlabel("Training examples")
    plt.ylabel("Loss")
    plt.plot(mean_losses, label="train")
    plt.grid()
    plt.legend()
    plt.draw()
Beispiel #14
0
def get_model(inp, patch_op):
    icnn = LL.DenseLayer(inp, 16)
    icnn = batch_norm(
        utils_lasagne.GCNNLayer([icnn, patch_op], 16, nrings=4, nrays=8))
    icnn = batch_norm(
        utils_lasagne.GCNNLayer([icnn, patch_op], 32, nrings=4, nrays=8))
    icnn = batch_norm(
        utils_lasagne.GCNNLayer([icnn, patch_op], 64, nrings=4, nrays=8))
    ffn = batch_norm(LL.DenseLayer(icnn, 512))
    ffn = LL.DenseLayer(icnn, nclasses, nonlinearity=utils_lasagne.log_softmax)

    return ffn
def dec_net(_incoming, output_channels, nonlinearity=None):
    _fc1 = L.DenseLayer(_incoming,
                        4 * _incoming.output_shape[1],
                        W=I.Normal(0.02),
                        b=None,
                        nonlinearity=NL.rectify)
    _fc2 = L.DenseLayer(_fc1,
                        output_channels,
                        W=I.Normal(0.02),
                        b=I.Constant(0),
                        nonlinearity=nonlinearity)
    return _fc2
Beispiel #16
0
def Network2(input_var=None,output_num=None,l1 = None,l2=None,l3=None,input_size = None):
	l_in = L.InputLayer(shape=(None,1,1,input_size),input_var=input_var)

	l_hid1 = L.DenseLayer(l_in,num_units=l1,nonlinearity=lasagne.nonlinearities.tanh)

	l_hid2 = L.DenseLayer(l_hid1,num_units = l2,nonlinearity = lasagne.nonlinearities.tanh)

	l_hid3 = L.DenseLayer(l_hid2,num_units = l3,nonlinearity = lasagne.nonlinearities.tanh)

	l_out = L.DenseLayer(l_hid3,num_units = output_num,nonlinearity=None)

	return l_out
Beispiel #17
0
    def __init__(self,
                 env_spec,
                 hidden_sizes=(32, 32),
                 hidden_nonlinearity=NL.rectify,
                 hidden_w_init=LI.HeUniform(),
                 hidden_b_init=LI.Constant(0.),
                 output_nonlinearity=NL.tanh,
                 output_w_init=LI.Uniform(-3e-3, 3e-3),
                 output_b_init=LI.Uniform(-3e-3, 3e-3),
                 bn=False):

        assert isinstance(env_spec.action_space, Box)

        Serializable.quick_init(self, locals())

        l_obs = L.InputLayer(shape=(None, env_spec.observation_space.flat_dim))

        l_hidden = l_obs
        if bn:
            l_hidden = batch_norm(l_hidden)

        for idx, size in enumerate(hidden_sizes):
            l_hidden = L.DenseLayer(
                l_hidden,
                num_units=size,
                W=hidden_w_init,
                b=hidden_b_init,
                nonlinearity=hidden_nonlinearity,
                name="h%d" % idx)
            if bn:
                l_hidden = batch_norm(l_hidden)

        l_output = L.DenseLayer(
            l_hidden,
            num_units=env_spec.action_space.flat_dim,
            W=output_w_init,
            b=output_b_init,
            nonlinearity=output_nonlinearity,
            name="output")

        # Note the deterministic=True argument. It makes sure that when getting
        # actions from single observations, we do not update params in the
        # batch normalization layers

        action_var = L.get_output(l_output, deterministic=True)
        self._output_layer = l_output

        self._f_actions = tensor_utils.compile_function([l_obs.input_var],
                                                        action_var)

        super(DeterministicMLPPolicy, self).__init__(env_spec)
        LasagnePowered.__init__(self, [l_output])
Beispiel #18
0
 def build_network(self):
     l_char1_in = L.InputLayer(shape=(None, None, self.max_word_len),
                               input_var=self.inps[0])
     l_char2_in = L.InputLayer(shape=(None, None, self.max_word_len),
                               input_var=self.inps[1])
     l_mask1_in = L.InputLayer(shape=(None, None, self.max_word_len),
                               input_var=self.inps[2])
     l_mask2_in = L.InputLayer(shape=(None, None, self.max_word_len),
                               input_var=self.inps[3])
     l_char_in = L.ConcatLayer([l_char1_in, l_char2_in],
                               axis=1)  # B x (ND+NQ) x L
     l_char_mask = L.ConcatLayer([l_mask1_in, l_mask2_in], axis=1)
     shp = (self.inps[0].shape[0],
            self.inps[0].shape[1] + self.inps[1].shape[1],
            self.inps[1].shape[2])
     l_index_reshaped = L.ReshapeLayer(l_char_in,
                                       (shp[0] * shp[1], shp[2]))  # BN x L
     l_mask_reshaped = L.ReshapeLayer(l_char_mask,
                                      (shp[0] * shp[1], shp[2]))  # BN x L
     l_lookup = L.EmbeddingLayer(l_index_reshaped, self.num_chars,
                                 self.char_dim)  # BN x L x D
     l_fgru = L.GRULayer(l_lookup,
                         2 * self.char_dim,
                         grad_clipping=10,
                         gradient_steps=-1,
                         precompute_input=True,
                         only_return_final=True,
                         mask_input=l_mask_reshaped)
     l_bgru = L.GRULayer(l_lookup,
                         2 * self.char_dim,
                         grad_clipping=10,
                         gradient_steps=-1,
                         precompute_input=True,
                         backwards=True,
                         only_return_final=True,
                         mask_input=l_mask_reshaped)  # BN x 2D
     l_fwdembed = L.DenseLayer(l_fgru,
                               self.embed_dim / 2,
                               nonlinearity=None)  # BN x DE
     l_bckembed = L.DenseLayer(l_bgru,
                               self.embed_dim / 2,
                               nonlinearity=None)  # BN x DE
     l_embed = L.ElemwiseSumLayer([l_fwdembed, l_bckembed], coeffs=1)
     l_char_embed = L.ReshapeLayer(l_embed,
                                   (shp[0], shp[1], self.embed_dim / 2))
     l_embed1 = L.SliceLayer(l_char_embed,
                             slice(0, self.inps[0].shape[1]),
                             axis=1)
     l_embed2 = L.SliceLayer(l_char_embed,
                             slice(-self.inps[1].shape[1], None),
                             axis=1)
     return l_embed1, l_embed2
Beispiel #19
0
def BatchNormRecurrentLayer(incoming,
                            num_units,
                            nonlinearity=None,
                            gradient_steps=-1,
                            grad_clipping=0,
                            layer_type=layers.CustomRecurrentLayer,
                            name='',
                            **kwargs):
    """
    Helper method to define a Vanilla Recurrent Layer with batch normalization
    """
    input_shape = incoming.output_shape
    # Define input to hidden connections
    in_to_hid_rf = layers.InputLayer((None, ) + input_shape[2:])
    in_to_hid_rf = layers.DenseLayer(in_to_hid_rf,
                                     num_units,
                                     b=None,
                                     nonlinearity=None,
                                     name='ith_{0}'.format(name))
    in_to_hid_rf_W = in_to_hid_rf.W

    # Use batch normalization in the input to hidden connections
    in_to_hid_rf = layers.BatchNormLayer(in_to_hid_rf,
                                         name='ith_bn_{0}'.format(name))

    # Define hidden to hidden connections
    hid_to_hid_rf = layers.InputLayer((None, num_units))
    hid_to_hid_rf = layers.DenseLayer(hid_to_hid_rf,
                                      num_units,
                                      b=None,
                                      nonlinearity=None,
                                      name='hth_{0}'.format(name))

    l_r_f = layer_type(incoming,
                       input_to_hidden=in_to_hid_rf,
                       hidden_to_hidden=hid_to_hid_rf,
                       gradient_steps=gradient_steps,
                       grad_clipping=grad_clipping,
                       nonlinearity=nonlinearity,
                       name='l_r_{0}'.format(name),
                       **kwargs)

    # Make layer parameters intuitively accessible
    l_r_f.W_in_to_hid = in_to_hid_rf_W
    l_r_f.W_hid_to_hid = hid_to_hid_rf.W
    l_r_f.beta = in_to_hid_rf.beta
    l_r_f.gamma = in_to_hid_rf.gamma
    l_r_f.mean = in_to_hid_rf.mean
    l_r_f.inv_std = in_to_hid_rf.inv_std
    l_r_f.hid_init = l_r_f.hid_init
    return l_r_f
Beispiel #20
0
    def get_discriminator(self):
        ''' specify discriminator D0 '''
        """
        disc0_layers = [LL.InputLayer(shape=(self.args.batch_size, 3, 32, 32))]
        disc0_layers.append(LL.GaussianNoiseLayer(disc0_layers[-1], sigma=0.05))
        disc0_layers.append(dnn.Conv2DDNNLayer(disc0_layers[-1], 96, (3,3), pad=1, W=Normal(0.02), nonlinearity=nn.lrelu))
        disc0_layers.append(nn.batch_norm(dnn.Conv2DDNNLayer(disc0_layers[-1], 96, (3,3), pad=1, stride=2, W=Normal(0.02), nonlinearity=nn.lrelu))) # 16x16
        disc0_layers.append(LL.DropoutLayer(disc0_layers[-1], p=0.1))
        disc0_layers.append(nn.batch_norm(dnn.Conv2DDNNLayer(disc0_layers[-1], 192, (3,3), pad=1, W=Normal(0.02), nonlinearity=nn.lrelu)))
        disc0_layers.append(nn.batch_norm(dnn.Conv2DDNNLayer(disc0_layers[-1], 192, (3,3), pad=1, stride=2, W=Normal(0.02), nonlinearity=nn.lrelu))) # 8x8
        disc0_layers.append(LL.DropoutLayer(disc0_layers[-1], p=0.1))
        disc0_layers.append(nn.batch_norm(dnn.Conv2DDNNLayer(disc0_layers[-1], 192, (3,3), pad=0, W=Normal(0.02), nonlinearity=nn.lrelu))) # 6x6
        disc0_layer_shared = LL.NINLayer(disc0_layers[-1], num_units=192, W=Normal(0.02), nonlinearity=nn.lrelu) # 6x6
        disc0_layers.append(disc0_layer_shared)

        disc0_layer_z_recon = LL.DenseLayer(disc0_layer_shared, num_units=50, W=Normal(0.02), nonlinearity=None)
        disc0_layers.append(disc0_layer_z_recon) # also need to recover z from x

        disc0_layers.append(LL.GlobalPoolLayer(disc0_layer_shared))
        disc0_layer_adv = LL.DenseLayer(disc0_layers[-1], num_units=10, W=Normal(0.02), nonlinearity=None)
        disc0_layers.append(disc0_layer_adv)

        return disc0_layers, disc0_layer_adv, disc0_layer_z_recon
        """
        disc_x_layers = [LL.InputLayer(shape=(None, 3, 32, 32))]
        disc_x_layers.append(LL.GaussianNoiseLayer(disc_x_layers[-1], sigma=0.2))
        disc_x_layers.append(dnn.Conv2DDNNLayer(disc_x_layers[-1], 96, (3,3), pad=1, W=Normal(0.01), nonlinearity=nn.lrelu))
        disc_x_layers.append(nn.batch_norm(dnn.Conv2DDNNLayer(disc_x_layers[-1], 96, (3,3), pad=1, stride=2, W=Normal(0.01), nonlinearity=nn.lrelu)))
        disc_x_layers.append(LL.DropoutLayer(disc_x_layers[-1], p=0.5))
        disc_x_layers.append(nn.batch_norm(dnn.Conv2DDNNLayer(disc_x_layers[-1], 192, (3,3), pad=1, W=Normal(0.01), nonlinearity=nn.lrelu)))
        disc_x_layers.append(nn.batch_norm(dnn.Conv2DDNNLayer(disc_x_layers[-1], 192, (3,3), pad=1, stride=2, W=Normal(0.01), nonlinearity=nn.lrelu)))
        disc_x_layers.append(LL.DropoutLayer(disc_x_layers[-1], p=0.5))
        disc_x_layers.append(nn.batch_norm(dnn.Conv2DDNNLayer(disc_x_layers[-1], 192, (3,3), pad=0, W=Normal(0.01), nonlinearity=nn.lrelu)))
        disc_x_layers_shared = LL.NINLayer(disc_x_layers[-1], num_units=192, W=Normal(0.01), nonlinearity=nn.lrelu)
        disc_x_layers.append(disc_x_layers_shared)

        disc_x_layer_z_recon = LL.DenseLayer(disc_x_layers_shared, num_units=self.args.z0dim, nonlinearity=None)
        disc_x_layers.append(disc_x_layer_z_recon) # also need to recover z from x

        # disc_x_layers.append(nn.MinibatchLayer(disc_x_layers_shared, num_kernels=100))
        disc_x_layers.append(LL.GlobalPoolLayer(disc_x_layers_shared))
        disc_x_layer_adv = LL.DenseLayer(disc_x_layers[-1], num_units=10, W=Normal(0.01), nonlinearity=None)
        disc_x_layers.append(disc_x_layer_adv)

        #output_before_softmax_x = LL.get_output(disc_x_layer_adv, x, deterministic=False)
        #output_before_softmax_gen = LL.get_output(disc_x_layer_adv, gen_x, deterministic=False)

        # temp = LL.get_output(gen_x_layers[-1], deterministic=False, init=True)
        # temp = LL.get_output(disc_x_layers[-1], x, deterministic=False, init=True)
        # init_updates = [u for l in LL.get_all_layers(gen_x_layers)+LL.get_all_layers(disc_x_layers) for u in getattr(l,'init_updates',[])]
        return disc_x_layers, disc_x_layer_adv, disc_x_layer_z_recon
Beispiel #21
0
    def build_network(self, ra_input_var, mc_input_var):
        print('Building raw network with parameters:')
        pp = pprint.PrettyPrinter(indent=4)
        pp.pprint(self.net_opts)

        ra_network_1 = layers.InputLayer((None, 1, None), ra_input_var)
        ra_network_1 = self.set_conv_layer(ra_network_1,
                                           'ra_conv_1',
                                           dropout=False,
                                           pad='same')
        ra_network_1 = self.set_pool_layer(ra_network_1, 'ra_pool_1')
        ra_network_1 = self.set_conv_layer(ra_network_1,
                                           'ra_conv_2',
                                           pad='same')
        ra_network_1 = self.set_pool_layer(ra_network_1, 'ra_pool_2')
        ra_network_1 = self.set_conv_layer(ra_network_1,
                                           'ra_conv_3',
                                           pad='same')
        ra_network_1 = self.set_pool_layer(ra_network_1, 'ra_pool_3')
        ra_network_1 = self.set_conv_layer(ra_network_1,
                                           'ra_conv_4',
                                           pad='same')
        ra_network_1 = self.set_pool_layer(ra_network_1, 'ra_pool_4')
        concat_list = [ra_network_1]
        mc_input = layers.InputLayer((None, 2, None), mc_input_var)
        concat_list.append(mc_input)
        network = layers.ConcatLayer(concat_list,
                                     axis=1,
                                     cropping=[None, None, 'center'])
        network = self.set_conv_layer(network, 'conv_1')
        network = self.set_pool_layer(network, 'pool_1')
        network = self.set_conv_layer(network, 'conv_2')
        network = self.set_pool_layer(network, 'pool_2')
        network = self.set_conv_layer(network, 'conv_3')
        network = layers.GlobalPoolLayer(
            network, getattr(T, self.net_opts['global_pool_func']))
        # print(layers.get_output_shape(network))
        # network = layers.DenseLayer(layers.dropout(network, p=self.net_opts['dropout_p']),
        #                           self.net_opts['dens_1'],
        #                           nonlinearity=lasagne.nonlinearities.rectify)
        network = layers.DenseLayer(
            layers.dropout(network, p=self.net_opts['dropout_p']),
            self.net_opts['dens_2'],
            nonlinearity=lasagne.nonlinearities.rectify)
        network = layers.DenseLayer(
            layers.dropout(network, p=self.net_opts['dropout_p']),
            self.net_opts['num_class'],
            nonlinearity=lasagne.nonlinearities.softmax)
        # print(layers.get_output_shape(network))
        self.network = network
        return self.network
    def build_architecture(self):

        l_out = layers.InputLayer(shape = tuple([None] + self.input_dim), input_var = self.input_var)
        l_out = layers.DenseLayer(l_out, num_units = 10, nonlinearity = lasagne.nonlinearities.sigmoid)

        self.l_out1 = l_out

        # 3 output classes
        # l_out = layers.DenseLayer(l_out, num_units = 3, nonlinearity = lasagne.nonlinearities.softmax)
        print self.b.get_value()
        l_out = layers.DenseLayer(incoming = l_out, num_units = 3, b = self.b, nonlinearity = lasagne.nonlinearities.softmax)

        # print type(self.b)
        self.l_out = l_out
Beispiel #23
0
 def __build_24_calib_net__(self):
     network = layers.InputLayer((None, 3, 24, 24),
                                 input_var=self.__input_var__)
     network = layers.Conv2DLayer(network,
                                  num_filters=32,
                                  filter_size=(5, 5),
                                  stride=1,
                                  nonlinearity=relu)
     network = layers.MaxPool2DLayer(network, pool_size=(3, 3), stride=2)
     network = layers.DenseLayer(network, num_units=64, nonlinearity=relu)
     network = layers.DenseLayer(network,
                                 num_units=45,
                                 nonlinearity=softmax)
     return network
 def __build_12_net__(self):
     network = layers.InputLayer((None, 3, 12, 12),
                                 input_var=self.__input_var__)
     network = layers.Conv2DLayer(network,
                                  num_filters=16,
                                  filter_size=(3, 3),
                                  stride=1,
                                  nonlinearity=relu)
     network = layers.MaxPool2DLayer(network, pool_size=(3, 3), stride=2)
     network = layers.DropoutLayer(network)
     network = layers.DenseLayer(network, num_units=16, nonlinearity=relu)
     #network = layers.Conv2DLayer(network,num_filters=16,filter_size=(1,1),stride=1,nonlinearity=relu)
     network = layers.DenseLayer(network, num_units=2, nonlinearity=softmax)
     return network
Beispiel #25
0
def build_network(state_shape, num_actions):
    """Builds a network with input size state_shape & num_actions output.
        
    As problem is discrete, we predict the Q-value for all possible actions.
    """

    input_shape = (None, ) + state_shape
    W_init = lasagne.init.GlorotUniform()
    nonlin = lasagne.nonlinearities.rectify

    network = nn.InputLayer(input_shape, input_var=None)
    network = nn.DenseLayer(network,50, W=W_init, nonlinearity=nonlin)
    network = nn.DenseLayer(network, num_actions, W=W_init, nonlinearity=None)
    return network
Beispiel #26
0
def buildModel():

    #this is our input layer with the inputs (None, dimensions, width, height)
    l_input = layers.InputLayer((None, 3, 32, 32))

    #first convolutional layer, has l_input layer as incoming and is followed by a pooling layer
    l_conv1 = layers.Conv2DLayer(l_input,
                                 num_filters=32,
                                 filter_size=3,
                                 pad='same',
                                 nonlinearity=tanh)
    l_pool1 = layers.MaxPool2DLayer(l_conv1, pool_size=2)

    #second convolution (l_pool1 is incoming), let's increase the number of filters
    l_conv2 = layers.Conv2DLayer(l_pool1,
                                 num_filters=64,
                                 filter_size=3,
                                 pad='same',
                                 nonlinearity=tanh)
    l_pool2 = layers.MaxPool2DLayer(l_conv2, pool_size=2)

    #third convolution (l_pool2 is incoming), even more filters
    l_conv3 = layers.Conv2DLayer(l_pool2,
                                 num_filters=128,
                                 filter_size=3,
                                 pad='same',
                                 nonlinearity=tanh)
    l_pool3 = layers.MaxPool2DLayer(l_conv3, pool_size=2)

    #fourth and final convolution
    l_conv4 = layers.Conv2DLayer(l_pool3,
                                 num_filters=256,
                                 filter_size=3,
                                 pad='same',
                                 nonlinearity=tanh)
    l_pool4 = layers.MaxPool2DLayer(l_conv4, pool_size=2)

    #our cnn contains 3 dense layers, one of them is our output layer
    l_dense1 = layers.DenseLayer(l_pool4, num_units=128, nonlinearity=tanh)
    l_dense2 = layers.DenseLayer(l_dense1, num_units=128, nonlinearity=tanh)

    #the output layer has 5 units which is exactly the count of our class labels
    #it has a softmax activation function, its values represent class probabilities
    l_output = layers.DenseLayer(l_dense2, len(tagMap), nonlinearity=softmax)

    #let's see how many params our net has
    print("MODEL HAS", layers.count_params(l_output), "PARAMS")

    #we return the layer stack as our network by returning the last layer
    return l_output
Beispiel #27
0
def buildModel():

    # Theinput layer with the inputs (None, dimensions, width, height)
    l_input = layers.InputLayer((None, 3, 32, 32))

    # First convolutional layer, has l_input layer as incoming and is followed by a pooling layer, filters = 16
    l_conv1 = layers.Conv2DLayer(l_input,
                                 num_filters=16,
                                 filter_size=3,
                                 pad='same',
                                 nonlinearity=tanh)
    l_pool1 = layers.MaxPool2DLayer(l_conv1, pool_size=2)

    # The second convolution (l_pool1 is incoming), filters = 32
    l_conv2 = layers.Conv2DLayer(l_pool1,
                                 num_filters=32,
                                 filter_size=3,
                                 pad='same',
                                 nonlinearity=tanh)
    l_pool2 = layers.MaxPool2DLayer(l_conv2, pool_size=2)

    # The third convolution (l_pool2 is incoming), filters = 64
    l_conv3 = layers.Conv2DLayer(l_pool2,
                                 num_filters=64,
                                 filter_size=3,
                                 pad='same',
                                 nonlinearity=tanh)
    l_pool3 = layers.MaxPool2DLayer(l_conv3, pool_size=2)

    # The fourth and final convolution, filters = 128
    l_conv4 = layers.Conv2DLayer(l_pool3,
                                 num_filters=128,
                                 filter_size=3,
                                 pad='same',
                                 nonlinearity=tanh)
    l_pool4 = layers.MaxPool2DLayer(l_conv4, pool_size=2)

    # The CNN contains 3 dense layers, one of them is the output layer
    l_dense1 = layers.DenseLayer(l_pool4, num_units=64, nonlinearity=tanh)
    l_dense2 = layers.DenseLayer(l_dense1, num_units=64, nonlinearity=tanh)

    # The output layer has 43 units which is exactly the count of our class labels
    # It has a softmax activation function, its values represent class probabilities
    l_output = layers.DenseLayer(l_dense2, num_units=43, nonlinearity=softmax)

    #print "The CNN model has ", layers.count_params(l_output), "parameters"

    # Returning the layer stack by returning the last layer
    return l_output
Beispiel #28
0
    def __init__(self,
                 input_shape,
                 output_dim,
                 hidden_sizes,
                 hidden_nonlinearity,
                 output_nonlinearity,
                 hidden_W_init=LI.GlorotUniform(),
                 hidden_b_init=LI.Constant(0.),
                 output_W_init=LI.GlorotUniform(),
                 output_b_init=LI.Constant(0.),
                 name=None,
                 input_var=None,
                 input_layer=None):

        if name is None:
            prefix = ""
        else:
            prefix = name + "_"

        if input_layer is None:
            l_in = L.InputLayer(shape=(None, ) + input_shape,
                                input_var=input_var)
        else:
            l_in = input_layer
        self._layers = [l_in]
        l_hid = l_in
        for idx, hidden_size in enumerate(hidden_sizes):
            l_hid = L.DenseLayer(
                l_hid,
                num_units=hidden_size,
                nonlinearity=hidden_nonlinearity,
                name="%shidden_%d" % (prefix, idx),
                W=hidden_W_init,
                b=hidden_b_init,
            )
            self._layers.append(l_hid)
        l_out = L.DenseLayer(
            l_hid,
            num_units=output_dim,
            nonlinearity=output_nonlinearity,
            name="%soutput" % (prefix, ),
            W=output_W_init,
            b=output_b_init,
        )
        self._layers.append(l_out)
        self._l_in = l_in
        self._l_out = l_out
        self._input_var = l_in.input_var
        self._output = L.get_output(l_out)
def enc_net(_incoming, output_channels, drop_rate=0.3, nonlinearity=None):
    #    #_noise = L.GaussianNoiseLayer(_incoming, sigma=0.1)
    _drop1 = L.DropoutLayer(_incoming, p=drop_rate, rescale=True)
    _fc1 = L.DenseLayer(_drop1,
                        4 * output_channels,
                        W=I.Normal(0.02),
                        b=I.Constant(0.1),
                        nonlinearity=NL.rectify)
    _drop2 = L.DropoutLayer(_fc1, p=drop_rate, rescale=True)
    _fc2 = L.DenseLayer(_drop2,
                        output_channels,
                        W=I.Normal(0.02),
                        b=I.Constant(0.1),
                        nonlinearity=nonlinearity)
    return _fc2
Beispiel #30
0
 def _forward(self):
     net = {}
     net['input'] = layers.InputLayer(shape=(None, 1, 28, 28),
                                      input_var=self.X)
     net['dense'] = layers.DenseLayer(net['input'],
                                      num_units=2048,
                                      W=init.GlorotUniform(),
                                      b=init.Constant(0.),
                                      nonlinearity=nonlinearities.rectify)
     net['out'] = layers.DenseLayer(net['dense'],
                                    num_units=10,
                                    W=init.GlorotUniform(),
                                    b=None,
                                    nonlinearity=nonlinearities.softmax)
     return net