Beispiel #1
0
def initialize_cache(inputs, outputs, targets, max_decode_len, config):
    """Initialize a cache for a given input shape and max decode length."""
    target_shape = (targets.shape[0], max_decode_len)
    dtype = config.base_config.dtype
    initial_variables = models.DecomposeAttentionTransformer(config).init(
        jax.random.PRNGKey(0), jnp.ones(inputs.shape, dtype),
        jnp.ones(outputs.shape, dtype), jnp.ones(target_shape, dtype))
    return initial_variables['cache']
 def tokens_ids_to_logits(flat_ids):
   """Token slice to logits from decoder model."""
   # --> [batch * beam, 1, vocab]
   flat_logits = models.DecomposeAttentionTransformer(config=config).apply(
       {'params': params},
       flat_ids,
       flat_encoded,
       flat_encoded_padding_mask,
       method=models.DecomposeAttentionTransformer.decode)
   return flat_logits
Beispiel #3
0
def eval_step(params, inputs, outputs, targets, eos_token, config):
    """Collect metrics for evaluation during training."""
    weights = jnp.where(
        jnp.logical_and(
            targets > 0,
            jnp.logical_and(targets != config.base_config.bos_token,
                            targets != eos_token)), 1, 0).astype(jnp.float32)
    logits = models.DecomposeAttentionTransformer(config).apply(
        {'params': params}, inputs, outputs, targets)

    return compute_metrics(logits, targets, weights)
 def loss_fn(params):
   """Loss function used for training."""
   logits = models.DecomposeAttentionTransformer(config).apply(
       {'params': params},
       inputs,
       outputs,
       targets,
       rngs={'dropout': dropout_rng})
   loss, weight_sum = compute_weighted_cross_entropy(logits, targets, weights)
   mean_loss = loss / weight_sum
   return mean_loss, logits
 def tokens_ids_to_logits(flat_ids, flat_cache):
   """Token slice to logits from decoder model."""
   # --> [batch * beam, 1, vocab]
   flat_logits, new_vars = models.DecomposeAttentionTransformer(
       config=config).apply(
           {'params': params, 'cache': flat_cache},
           flat_ids,
           flat_encoded,
           flat_encoded_padding_mask,
           mutable=['cache'],
           method=models.DecomposeAttentionTransformer.decode)
   new_flat_cache = new_vars['cache']
   # Remove singleton sequence-length dimension:
   # [batch * beam, 1, vocab] --> [batch * beam, vocab]
   flat_logits = flat_logits.squeeze(axis=1)
   return flat_logits, new_flat_cache
Beispiel #6
0
def main(_):
    tf.enable_v2_behavior()

    tf.random.set_seed(FLAGS.seed)
    np.random.seed(FLAGS.seed)
    random.seed(FLAGS.seed)

    if not gfile.isdir(FLAGS.save_dir):
        gfile.makedirs(FLAGS.save_dir)

    hparam_str_dict = json.loads(FLAGS.xm_parameters)
    hparam_str = ','.join([
        '%s=%s' % (shorten(k), str(hparam_str_dict[k]))
        for k in hparam_str_dict.keys()
    ])

    # Number of local devices for this host.
    n_devices = jax.local_device_count()

    if jax.host_id() == 0:
        summary_writer = tensorboard.SummaryWriter(
            os.path.join(FLAGS.save_dir, 'tb', hparam_str))

    batch_size = FLAGS.per_device_batch_size * n_devices
    io_shape = (FLAGS.per_device_batch_size, FLAGS.num_strings_per_task,
                FLAGS.max_characters)
    predict_io_shape = (FLAGS.per_device_batch_size,
                        FLAGS.num_strings_per_task,
                        FLAGS.predict_max_characters)
    target_shape = (FLAGS.per_device_batch_size, FLAGS.max_target_length)

    # Setup DSL
    # ---------------------------------------------------------------------------

    # Build token tables.
    if FLAGS.dataset_type in ['robust_fill', 'robust_fill_base']:
        spec_vocab = robust_fill_dsl.CHARACTER + input_pipeline.SEPARATOR_TOKEN
        spec_id_token_table = {
            i + 3: token
            for i, token in enumerate(spec_vocab)
        }
        bos_id = 1
        eos_id = 2
        spec_id_token_table[bos_id] = robust_fill_dsl.BOS
        spec_id_token_table[eos_id] = robust_fill_dsl.EOS
        spec_token_id_table = {
            token: id
            for id, token in spec_id_token_table.items()
        }
        spec_vocab_size = len(spec_token_id_table) + 1  # For padding.
        program_id_token_table, _ = dsl_tokens.build_token_tables()
        program_vocab_size = len(program_id_token_table) + 1
    elif FLAGS.dataset_type == 'scan':
        # TODO(jxihong): Scan is not handled yet.
        raise ValueError('Unhandled dataset_type: {}'.format(
            FLAGS.dataset_type))
    else:
        raise ValueError('Unhandled dataset_type: {}'.format(
            FLAGS.dataset_type))

    # Parse io and program token sequences (for eval).
    def decode_io(inputs, outputs):
        """Convert from int tensors to strings."""
        if FLAGS.dataset_type == 'robust_fill':

            def decode_str(s):
                """Decode string tokens."""
                return ''.join(
                    [spec_id_token_table[t_id] for t_id in s if t_id > 0])

            inps, outs = [], []
            for inp, out in zip(inputs, outputs):
                inps.append(decode_str(inp))
                outs.append(decode_str(out))
            return inps, outs

        elif FLAGS.dataset_type == 'scan':

            def decode_str(s):
                """Decode string tokens."""
                return ' '.join(
                    [spec_id_token_table[t_id] for t_id in s if t_id > 0])

            inps = [decode_str(inp) for inp in inputs]
            dummy_outs = [''] * len(inps)
            return inps, dummy_outs

        else:
            raise ValueError('Unhandled dataset_type: {}'.format(
                FLAGS.dataset_type))

    def decode_spec(target):
        """Convert from int tensor to a string."""
        target = target[:np.argmax(target == eos_id)].astype(np.int32)

        if FLAGS.dataset_type == 'robust_fill':
            target = target[target != bos_id].tolist()
            return ''.join(
                [spec_id_token_table[t_id] for t_id in target if t_id > 0])
        elif FLAGS.dataset_type == 'scan':
            # TODO(jxihong): Scan is not handled yet.
            raise ValueError('Unhandled dataset_type: {}'.format(
                FLAGS.dataset_type))
        else:
            raise ValueError('Unhandled dataset_type: {}'.format(
                FLAGS.dataset_type))

    def decode_program(program):
        """Decode program tokens into a program (program object or string)."""
        program = program[:np.argmax(program == eos_id) + 1].astype(np.int32)

        if FLAGS.dataset_type == 'robust_fill':
            # Returns either a Concat program object, or None.
            program = program[program != bos_id].tolist()
            try:
                return robust_fill_dsl.decode_program(program,
                                                      program_id_token_table)
            except:  # pylint: disable=bare-except
                return None  # Program does not compile.
        elif FLAGS.dataset_type == 'scan':
            # Returns a string.
            program = program[jnp.logical_and(program != bos_id,
                                              program != eos_id)].tolist()
            return ' '.join(scan_vocab.decode(program, program_id_token_table))
        else:
            raise ValueError('Unhandled dataset_type: {}'.format(
                FLAGS.dataset_type))

    def decode_program_str(program):  # pylint: disable=unused-variable
        """Decode program tokens into a string."""
        decoded = decode_program(program)
        if FLAGS.dataset_type == 'robust_fill':
            try:
                return decoded.to_string()  # pytype: disable=attribute-error
            except:  # pylint: disable=bare-except
                return 'did not compile'
        else:
            assert isinstance(decoded,
                              str), '{} should be string'.format(decoded)
            return decoded

    # Load Dataset
    # ---------------------------------------------------------------------------
    logging.info('Initializing dataset.')
    if not FLAGS.dataset_filepattern:
        raise ValueError('Must specify filepattern to dataset.')

    # Training dataset.
    logging.info('Loading dataset from %s', FLAGS.dataset_filepattern)
    padded_shapes = {
        'inputs': io_shape[1:],
        'outputs': io_shape[1:],
        'target': target_shape[1:],
    }
    logging.info('padded_shapes: %s', padded_shapes)

    if FLAGS.dataset_type == 'robust_fill':
        if FLAGS.model_type == 'spec_decomposer_model':
            create_dataset_fn = input_pipeline.create_robust_fill_dataset_for_spec_decomposer_model
        elif FLAGS.model_type == 'synthesizer_model':
            create_dataset_fn = input_pipeline.create_robust_fill_dataset_for_synthesizer_model
        else:
            raise ValueError(f'Unhandled model_type: {FLAGS.model_type}')

    elif FLAGS.dataset_type == 'scan':
        raise NotImplementedError()  # TODO(kshi): Implement.
        # create_dataset_fn = input_pipeline.create_scan_dataset_from_tf_record
    else:
        raise ValueError('Unhandled dataset_type: {}'.format(
            FLAGS.dataset_type))

    dataset = create_dataset_fn(FLAGS.dataset_filepattern, spec_token_id_table,
                                FLAGS.num_strings_per_task)
    dataset = dataset.padded_batch(batch_size,
                                   padded_shapes=padded_shapes,
                                   drop_remainder=True)
    # Split evaluation and training.
    eval_ds = dataset.take(FLAGS.num_eval_steps)
    # Decrease batch of predict dataset to handle beam search.
    predict_padded_shapes = padded_shapes.copy()
    predict_padded_shapes['inputs'] = predict_io_shape[1:]
    predict_padded_shapes['outputs'] = predict_io_shape[1:]
    logging.info('predict_padded_shapes: %s', predict_padded_shapes)
    predict_ds = eval_ds.unbatch().padded_batch(
        int(np.ceil(batch_size / 10)), padded_shapes=predict_padded_shapes)
    train_ds = dataset.skip(FLAGS.num_eval_steps)
    if FLAGS.train_set_batches > 0:
        train_ds = train_ds.take(FLAGS.train_set_batches)
    train_ds = train_ds.repeat()

    test_dataset = create_dataset_fn(FLAGS.test_dataset_filepattern,
                                     spec_token_id_table,
                                     FLAGS.num_strings_per_task)
    test_dataset = test_dataset.padded_batch(
        batch_size, padded_shapes=predict_padded_shapes, drop_remainder=False)
    quick_test_dataset = (test_dataset.take(
        FLAGS.num_quick_test_steps).unbatch().padded_batch(
            int(np.ceil(batch_size / 10)),
            padded_shapes=predict_padded_shapes))
    final_test_dataset = (test_dataset.take(
        FLAGS.num_final_test_steps).unbatch().padded_batch(
            int(np.ceil(batch_size / 10)),
            padded_shapes=predict_padded_shapes))

    # Build Model and Optimizer
    # ---------------------------------------------------------------------------
    if FLAGS.model_type == 'spec_decomposer_model':
        output_vocab_size = spec_vocab_size
    elif FLAGS.model_type == 'synthesizer_model':
        output_vocab_size = program_vocab_size
    else:
        raise ValueError(f'Unhandled model_type: {FLAGS.model_type}')

    base_config = base_models.TransformerConfig(
        vocab_size=spec_vocab_size,
        output_vocab_size=output_vocab_size,
        shift=True,
        emb_dim=FLAGS.embedding_dim,
        num_heads=FLAGS.num_heads,
        num_layers=FLAGS.num_layers,
        qkv_dim=FLAGS.embedding_dim,
        mlp_dim=FLAGS.hidden_dim,
        max_len=max(FLAGS.max_characters, FLAGS.max_target_length),
        dropout_rate=FLAGS.dropout_rate,
        attention_dropout_rate=FLAGS.attention_dropout_rate,
        use_relative_attention=FLAGS.use_relative_attention,
        deterministic=False,
        decode=False,
        bos_token=bos_id,
        num_input_relative_position_buckets=FLAGS.num_position_buckets,
        max_input_distance=FLAGS.max_distance,
        num_output_relative_position_buckets=FLAGS.num_position_buckets,
        max_output_distance=FLAGS.max_distance,
        num_input_cross_output_relative_position_buckets=(
            FLAGS.num_position_buckets),
        max_input_cross_output_distance=FLAGS.max_distance,
        num_program_relative_position_buckets=FLAGS.num_position_buckets,
        max_program_distance=FLAGS.max_distance,
        num_program_cross_embed_relative_position_buckets=(
            FLAGS.num_position_buckets),
        max_program_cross_embed_distance=FLAGS.
        max_program_cross_embed_distance,
        num_flat_encoding_relative_position_buckets=(
            FLAGS.num_position_buckets),
        max_flat_encoding_distance=FLAGS.max_distance)
    train_config = models.DecomposeAttentionTransformerConfig(
        base_config=base_config,
        dataset_type=FLAGS.dataset_type,
        flat_encoded_self_attention=FLAGS.flat_encoded_self_attention)
    eval_config = train_config.replace(base_config=base_config.replace(
        deterministic=True))
    predict_config = train_config.replace(base_config=base_config.replace(
        shift=False,
        deterministic=True,
        decode=not FLAGS.slow_decode,
        max_len=max(FLAGS.predict_max_characters, FLAGS.max_target_length)))

    rng = jax.random.PRNGKey(FLAGS.seed)
    rng = jax.random.fold_in(rng, jax.host_id())
    rng, init_rng = jax.random.split(rng)

    dropout_rng = jax.random.split(rng, jax.local_device_count())
    del rng

    m = models.DecomposeAttentionTransformer(eval_config)
    initial_variables = jax.jit(m.init)(init_rng,
                                        jnp.ones(io_shape, jnp.float32),
                                        jnp.ones(io_shape, jnp.float32),
                                        jnp.ones(target_shape, jnp.float32))

    optimizer_def = optim.Adam(FLAGS.lr,
                               beta1=0.9,
                               beta2=0.98,
                               eps=1e-9,
                               weight_decay=FLAGS.weight_decay)
    optimizer = optimizer_def.create(initial_variables['params'])

    del initial_variables  # Don't keep a copy of the initial model.

    start_step = 0
    if FLAGS.restore_checkpoints:
        # Restore unreplicated optimizer + model state from last checkpoint.
        optimizer = checkpoints.restore_checkpoint(
            os.path.join(FLAGS.save_dir, 'checkpoints', hparam_str), optimizer)
        # Grab last step.
        start_step = int(optimizer.state.step)
        logging.info('Found model checkpointed at step %d.', start_step)
        if FLAGS.finetune_start_step > 0:
            logging.info(
                'Checking that start_step (%s) == finetune_start_step (%s)',
                start_step, FLAGS.finetune_start_step)
            assert start_step >= FLAGS.finetune_start_step
            steps_to_skip = start_step - FLAGS.finetune_start_step
        else:
            steps_to_skip = start_step

        # TODO(kshi): It is likely that this code can lead to the job stalling for
        # 10+ hours when restarting from a checkpoint that had been trained a long
        # time, possibly because dataset skipping is slow.
        logging.info('Skipping %s steps...', steps_to_skip)
        train_ds = train_ds.skip(steps_to_skip)
        dummy_p_train_step = jax.pmap(
            lambda dropout_rng: jax.random.split(dropout_rng)[1])
        for _ in range(steps_to_skip):
            dropout_rng = dummy_p_train_step(dropout_rng)
        logging.info('Finished skipping steps')
        logging.info('Host %s has dropout_rng = %s', jax.host_id(),
                     dropout_rng)

    # Replicate optimizer.
    optimizer = jax_utils.replicate(optimizer)

    # TODO(jxihong): Implement fast decoding.
    assert FLAGS.slow_decode, 'Fast decoding is not implemented yet.'

    if FLAGS.finetune_start_step <= 0:
        learning_rate_fn = create_learning_rate_scheduler(
            base_learning_rate=FLAGS.lr)
    else:
        # Constant LR for finetuning.
        learning_rate_fn = create_learning_rate_scheduler(
            base_learning_rate=FLAGS.lr, factors='constant')
    p_train_step = jax.pmap(functools.partial(
        train_step, learning_rate_fn=learning_rate_fn, config=train_config),
                            axis_name='batch')
    p_eval_step = jax.pmap(functools.partial(eval_step,
                                             eos_token=eos_id,
                                             config=eval_config),
                           axis_name='batch')
    p_init_cache = jax.pmap(functools.partial(
        initialize_cache,
        max_decode_len=FLAGS.max_target_length,
        config=predict_config),
                            axis_name='batch')
    p_pred_step = jax.pmap(functools.partial(
        predict_step,
        eos_token=eos_id,
        max_decode_len=FLAGS.max_target_length,
        config=predict_config,
        slow_decode=FLAGS.slow_decode),
                           axis_name='batch',
                           static_broadcasted_argnums=(4, ))

    # Main Train Loop
    # ---------------------------------------------------------------------------

    logging.info('Starting training!')
    metrics_all = []
    tick = time.time()
    train_iter = train_ds.as_numpy_iterator()
    for step in range(start_step, FLAGS.num_train_steps):
        inputs, outputs, targets = load_data(next(train_iter))

        optimizer, metrics, dropout_rng = p_train_step(optimizer,
                                                       inputs,
                                                       outputs,
                                                       targets,
                                                       dropout_rng=dropout_rng)
        metrics_all.append(metrics)
        is_last_step = step == FLAGS.num_train_steps - 1

        # Periodic metric handling.

        # Training Metrics
        if (step and step % FLAGS.log_freq == 0) or is_last_step:
            logging.info('Gathering training metrics.')
            metrics_all = common_utils.get_metrics(metrics_all)
            lr = metrics_all.pop('learning_rate').mean()
            metrics_sums = jax.tree_map(jnp.sum, metrics_all)
            denominator = metrics_sums.pop('denominator')
            summary = jax.tree_map(
                lambda x: x / denominator,  # pylint: disable=cell-var-from-loop
                metrics_sums)
            summary['learning_rate'] = lr
            # Calculate (clipped) perplexity after averaging log-perplexities:
            summary['perplexity'] = jnp.clip(jnp.exp(summary['loss']),
                                             a_max=1.0e4)

            if jax.host_id() == 0:
                logging.info('Train in step: %d, loss: %.4f', step,
                             summary['loss'])
                tock = time.time()
                steps_per_sec = FLAGS.log_freq / (tock - tick)
                tick = tock
                summary_writer.scalar('train/steps per second', steps_per_sec,
                                      step)
                for key, val in summary.items():
                    summary_writer.scalar('train/' + key, val, step)
                summary_writer.flush()
            # Reset metric accumulation for next evaluation cycle.
            metrics_all = []

        # Evaluation Metrics
        if (step and step % FLAGS.eval_freq == 0) or is_last_step:
            logging.info('Gathering evaluation metrics.')
            t_evaluation_start = time.time()
            eval_metrics = []
            for batches in eval_ds.as_numpy_iterator():
                inputs, outputs, targets = load_data(batches)

                metrics = p_eval_step(optimizer.target, inputs, outputs,
                                      targets)
                eval_metrics.append(metrics)

            eval_metrics = common_utils.get_metrics(eval_metrics)
            eval_metrics_sums = jax.tree_map(jnp.sum, eval_metrics)
            eval_denominator = eval_metrics_sums.pop('denominator')
            eval_summary = jax.tree_map(
                lambda x: x / eval_denominator,  # pylint: disable=cell-var-from-loop
                eval_metrics_sums)

            if jax.host_id() == 0:
                logging.info('Evaluation time: %.4f s step %d, loss: %.4f.',
                             time.time() - t_evaluation_start, step,
                             eval_summary['loss'])
                for key, val in eval_summary.items():
                    summary_writer.scalar('eval/' + key, val, step)
                summary_writer.flush()

        # Beam search metrics.
        if (step and step % FLAGS.predict_freq == 0) or is_last_step:
            logging.info('Gathering beam search metrics.')
            test_ds = final_test_dataset if is_last_step else quick_test_dataset

            for dataset, predict_or_test in [(predict_ds, 'predict'),
                                             (test_ds, 'test')]:

                for beam_size in [1, 10]:
                    t_inference_start = time.time()
                    total_successes = 0
                    total_denominator = 0

                    ios, targets_list, predictions, top_of_beams, scores = ([],
                                                                            [],
                                                                            [],
                                                                            [],
                                                                            [])
                    for batches in dataset.as_numpy_iterator():
                        pred_batch = batches
                        # Handle final odd-sized batch by padding instead of dropping it.
                        cur_pred_batch_size = pred_batch['inputs'].shape[0]
                        if cur_pred_batch_size % n_devices:
                            padded_size = int(
                                np.ceil(cur_pred_batch_size / n_devices) *
                                n_devices)
                            # pylint: disable=cell-var-from-loop
                            pred_batch = jax.tree_map(
                                lambda x: pad_examples(x, padded_size),
                                pred_batch)
                        inputs, outputs, targets = load_data(pred_batch)

                        cache = (p_init_cache(inputs, outputs, targets)
                                 if not FLAGS.slow_decode else None)
                        predicted = p_pred_step(optimizer.target, inputs,
                                                outputs, cache, beam_size)
                        predicted = tohost(predicted)
                        inputs, outputs, targets = map(
                            tohost, (inputs, outputs, targets))

                        for i, beams in enumerate(predicted):
                            inps, outs = decode_io(inputs[i], outputs[i])

                            if FLAGS.model_type == 'spec_decomposer_model':
                                ground_truth = decode_spec(targets[i])
                                best_prediction, score = eval_predicted_spec_decomposer_model(
                                    beams, ground_truth, decode_spec)
                                decode_to_str_fn = decode_spec
                            elif FLAGS.model_type == 'synthesizer_model':
                                ground_truth = decode_program_str(targets[i])
                                best_prediction, score = eval_predicted_synthesizer_model(
                                    beams, inps, outs, decode_program)
                                decode_to_str_fn = decode_program_str
                            else:
                                raise ValueError(
                                    f'Unknown model type {FLAGS.model_type}')

                            if score > 0:
                                total_successes += 1
                            total_denominator += 1

                            beams_target = [
                                decode_to_str_fn(beam) for beam in beams
                            ]

                            ios.append(' ; '.join(map(str, zip(inps, outs))))
                            targets_list.append(ground_truth)
                            predictions.append(best_prediction)
                            scores.append(score)
                            logging.info('')
                            logging.info('ios: %s', ios[-1])
                            logging.info('targets[%s]: %s', i, targets[i])
                            logging.info('ground_truth: %s', ground_truth)
                            logging.info('predicted beam: %s',
                                         '\n'.join(beams_target))
                            logging.info('best_prediction: %s',
                                         best_prediction)
                            logging.info('score: %s', score)
                            logging.info('beams: %s', beams)

                            if not ground_truth:
                                logging.warn('ground_truth is empty!')

                            top_of_beam = []
                            for index, beam in enumerate(beams[:-5:-1]):
                                top_of_beam.append(
                                    'index: {}, decoded: {}, tokens: {}'.
                                    format(index, decode_to_str_fn(beam),
                                           beam))
                            top_of_beams.append('\n\n'.join(top_of_beam))

                    all_total_successes, all_total_denominator = per_host_sum_pmap(
                        jax.tree_map(np.array,
                                     (total_successes, total_denominator)))

                    # Record beam search results as text summaries.
                    message = []
                    for n in np.random.choice(np.arange(len(predictions)), 8):
                        text = (
                            f'ios: {ios[n]}\n\ntarget: {targets_list[n]}\n\n'
                            f'predicted: {predictions[n]}\n\n'
                            f'score: {scores[n]}\n\n'
                            f'top of beam:\n\n{top_of_beams[n]}\n\n')
                        message.append(text)

                    # Write to tensorboard.
                    if jax.host_id() == 0:
                        accuracy = 100 * all_total_successes / all_total_denominator
                        logging.info(
                            '%s results, step %d, beam size %d: %s / %s = %.2f%% (%.2f s)',
                            predict_or_test, step, beam_size,
                            all_total_successes, all_total_denominator,
                            accuracy,
                            time.time() - t_inference_start)
                        summary_writer.scalar(
                            '{}/beam-size-{}'.format(predict_or_test,
                                                     beam_size), accuracy,
                            step)

                        summary_writer.text(
                            '{}-samples-beam-{}'.format(
                                predict_or_test, beam_size),
                            '\n------\n'.join(message), step)
                        summary_writer.flush()

        # Save a Checkpoint. Do this at the end of the training loop, so that if a
        # worker is descheduled during a round of prediction (which takes a while),
        # we will redo prediction upon restarting (to avoid losing data).
        if (step % FLAGS.checkpoint_freq == 0 and step > 0) or is_last_step:
            if jax.host_id() == 0:
                # Save unreplicated optimizer + model state.
                checkpoints.save_checkpoint(
                    os.path.join(FLAGS.save_dir, 'checkpoints', hparam_str),
                    jax_utils.unreplicate(optimizer), step)
Beispiel #7
0
def predict_step(params,
                 inputs,
                 outputs,
                 cache,
                 beam_size,
                 eos_token,
                 max_decode_len,
                 config,
                 slow_decode=True):
    """Predict translation with fast decoding beam search on a batch."""
    # Prepare transformer fast-decoder call for beam search: for beam search, we
    # need to set up our decoder model to handle a batch size equal to
    # batch_size * beam_size, where each batch item's data is expanded in-place
    # rather than tiled.
    flat_encoded = decode.flat_batch_beam_expand(
        models.DecomposeAttentionTransformer(config).apply(
            {'params': params},
            inputs,
            outputs,
            method=models.DecomposeAttentionTransformer.encode), beam_size)

    encoded_padding_mask = jnp.where(outputs > 0, 1, 0).astype(jnp.float32)
    flat_encoded_padding_mask = decode.flat_batch_beam_expand(
        encoded_padding_mask, beam_size)

    if slow_decode:

        def tokens_ids_to_logits(flat_ids):
            """Token slice to logits from decoder model."""
            # --> [batch * beam, 1, vocab]
            flat_logits = models.DecomposeAttentionTransformer(
                config=config).apply(
                    {'params': params},
                    flat_ids,
                    flat_encoded,
                    flat_encoded_padding_mask,
                    method=models.DecomposeAttentionTransformer.decode)
            return flat_logits
    else:

        def tokens_ids_to_logits(flat_ids, flat_cache):
            """Token slice to logits from decoder model."""
            # --> [batch * beam, 1, vocab]
            flat_logits, new_vars = models.DecomposeAttentionTransformer(
                config=config).apply(
                    {
                        'params': params,
                        'cache': flat_cache
                    },
                    flat_ids,
                    flat_encoded,
                    flat_encoded_padding_mask,
                    mutable=['cache'],
                    method=models.DecomposeAttentionTransformer.decode)
            new_flat_cache = new_vars['cache']
            # Remove singleton sequence-length dimension:
            # [batch * beam, 1, vocab] --> [batch * beam, vocab]
            flat_logits = flat_logits.squeeze(axis=1)
            return flat_logits, new_flat_cache

    # Using the above-defined single-step decoder function, run a
    # beam search over possible sequences given input encoding.
    beam_seqs, _ = decode.beam_search(inputs,
                                      cache,
                                      tokens_ids_to_logits,
                                      beam_size=beam_size,
                                      alpha=0.6,
                                      bos_token=config.base_config.bos_token,
                                      eos_token=eos_token,
                                      max_decode_len=max_decode_len,
                                      slow_decode=slow_decode)

    # Beam search returns [n_batch, n_beam, n_length] with beam dimension
    # sorted in increasing order of log-probability.
    return beam_seqs