def launch(): global current_render_distance, current_username, current_process launch_button.state(['disabled']) if current_process is None or current_process.poll() is not None: current_process = launcher.run(get_features(), current_render_distance.get(), current_username.get()) return 0
def sequentialStep(): print('Starting with ', globalvars.appName) # creates child processes, each is a sniper run. sim.out is saved in # individual directories print('++Launcher++') launcher.run(permutations, parameterNames, False, True) # iterates over the sim.out and macpat files in the relevant directories to # collect stats. Stats are logged in a file 'efficiency.txt' in app directory print('++Stat-Collection++') stats.collectStats(permutations) # now that we have data for all the configurations, we can select the 'good' ones print('++Selection++') goodConfigs = selection.pickGood([x[1:] for x in parameters]) goodConfigDict[globalvars.appName] = goodConfigs
def parallelDetailed(appName, pinballLoc, outputDirBase): # log the output of the process to a specific file sys.stdout = open(outputDirBase+"plog.out", "w") appfeatures = list(list()) #append the names of the features appfeatures.append(featureNames) goodConfigs = goodConfigDict[appName] # now that we have the good configs, we need to launch sniper runs again for # these configs with detailed stat (counter-data) collection enabled #print('++Detailed-Run++') launcher.run(goodConfigs, parameterNames, True, False, pinballLoc, outputDirBase) # from the detailed runs, we now extract the feature vectors - this forms the # training data. Feature vectors are logged to a file #print('++Extraction++') featureGeneration.extract(goodConfigs, appfeatures, outputDirBase)
# Launcher # http://blog.tvalacarta.info/plugin-xbmc/tvalacarta/ #------------------------------------------------------------ # Constantes __plugin__ = "tvalacarta" __author__ = "tvalacarta" __url__ = "http://blog.tvalacarta.info/plugin-xbmc/tvalacarta/" __date__ = "1 Septiembre 2010" __version__ = "2.6" import os import sys import xbmc xbmc.output("[default.py] tvalacarta init...") # Configura los directorios donde hay librerías #librerias = xbmc.translatePath( os.path.join( os.getcwd(), 'resources', 'lib' ) ) #sys.path.append (librerias) #librerias = xbmc.translatePath( os.path.join( os.getcwd(), 'channels' ) ) #sys.path.append (librerias) #librerias = xbmc.translatePath( os.path.join( os.getcwd(), 'servers' ) ) #sys.path.append (librerias) librerias = xbmc.translatePath( os.path.join( os.getcwd(), 'youtubeAPI' ) ) sys.path.append (librerias) # Ejecuta el programa principal import launcher launcher.run()
f.detach().cpu()], dim=3) canvas.append(r) return canvas canvas = make(paths[:40]) canvas = torch.cat(canvas, dim=0) save_image(canvas * 0.5 + 0.5, 'make_figures/output/reconstructions_bed_1.png', nrow=4, pad_value=1.0) canvas = make(paths[40:80]) canvas = torch.cat(canvas, dim=0) save_image(canvas * 0.5 + 0.5, 'make_figures/output/reconstructions_bed_2.png', nrow=4, pad_value=1.0) if __name__ == "__main__": gpu_count = 1 run(sample, get_cfg_defaults(), description='ALAE-reconstruction-bedroom', default_config='configs/bedroom.yaml', world_size=gpu_count, write_log=False)
langevin_steps=cfg.LANGEVIN.STEP, lr=cfg.LANGEVIN.LR) with torch.no_grad(): latents = torch.cat((source_latent[:nrow], latents)) latents = latents.unsqueeze(1).repeat(1, ae.mapping_fl.num_layers, 1) out = decode(ae, latents, cfg) out = torch.cat((source_img[:nrow], out), dim=0) utils.save_image( out, f"{run_dir}/{str(iterations).zfill(6)}.png", nrow=nrow, normalize=True, padding=0, range=(-1, 1), ) if __name__ == "__main__": gpu_count = 1 run(train, get_cfg_defaults(), description='Image-Translation', default_config='configs/celeba-hq.yaml', world_size=gpu_count, write_log=False)
model.eval() layer_count = cfg.MODEL.LAYER_COUNT decoder = nn.DataParallel(decoder) im_size = 2**(cfg.MODEL.LAYER_COUNT + 1) with torch.no_grad(): draw_uncurated_result_figure(cfg, 'make_figures/output/%s/generations.jpg' % cfg.NAME, model, cx=0, cy=0, cw=im_size, ch=im_size, rows=6, lods=[0, 0, 0, 1, 1, 2], seed=5) if __name__ == "__main__": gpu_count = 1 run(sample, get_cfg_defaults(), description='ALAE-generations', default_config='configs/ffhq.yaml', world_size=gpu_count, write_log=False)
'dlatent_avg': dlatent_avg } checkpointer = Checkpointer(cfg, model_dict, {}, logger=logger, save=False) checkpointer.load() model.eval() layer_count = cfg.MODEL.LAYER_COUNT logger.info("Generating...") decoder = nn.DataParallel(decoder) mapping_fl = nn.DataParallel(mapping_fl) with torch.no_grad(): gen = ImageGenerator(cfg, num_samples=60000, minibatch_gpu=8) gen.evaluate(logger, mapping_fl, decoder, cfg.DATASET.MAX_RESOLUTION_LEVEL - 2) if __name__ == "__main__": gpu_count = 1 run(sample, get_cfg_defaults(), description='ALAE-generate-images-for-attribute-classifications', default_config='configs/ffhq.yaml', world_size=gpu_count, write_log=False)
extra_checkpoint_data = checkpointer.load() last_epoch = list(extra_checkpoint_data['auxiliary'] ['scheduler'].values())[0]['last_epoch'] logger.info("Model trained for %d epochs" % last_epoch) model.eval() layer_count = cfg.MODEL.LAYER_COUNT logger.info("Evaluating FID metric") model.decoder = nn.DataParallel(decoder) with torch.no_grad(): ppl = FID(cfg, num_images=50000, minibatch_size=16 * torch.cuda.device_count()) ppl.evaluate(logger, mapping_fl, model.decoder, model, cfg.DATASET.MAX_RESOLUTION_LEVEL - 2) if __name__ == "__main__": gpu_count = 1 run(sample, get_cfg_defaults(), description='ALAE-fid', default_config='configs/ffhq.yaml', world_size=gpu_count, write_log="metrics/fid_score.txt")
def launchEmulator(self): path=r'\Symbian\9.1\S60_3rd\Epoc32\release\winscw\udeb\bluewhaleplatform.exe' print "launch ", path child = launcher.run(path) return child
def launchEmulator(self): path = r'\Symbian\9.1\S60_3rd\Epoc32\release\winscw\udeb\bluewhaleplatform.exe' print "launch ", path child = launcher.run(path) return child
model.eval() im_size = 2**(cfg.MODEL.LAYER_COUNT + 1) seed = np.random.randint(0, 999999) print("seed:", seed) with torch.no_grad(): path = './make_figures/output' os.makedirs(path, exist_ok=True) os.makedirs(os.path.join(path, cfg.NAME), exist_ok=True) draw_uncurated_result_figure( cfg, './make_figures/output/%s/generations.jpg' % cfg.NAME, model, cx=0, cy=0, cw=im_size, ch=im_size, rows=6, lods=[0, 0, 0, 1, 1, 2], seed=seed) if __name__ == "__main__": gpu_count = 1 run(sample, get_cfg_defaults(), description='SoftIntroVAE-generations', default_config='./configs/ffhq256.yaml', world_size=gpu_count, write_log=False)
requires_grad=True).cuda() / 127.5 - 1. if x.shape[0] == 4: x = x[:3] while x.shape[2] != model.decoder.layer_to_resolution[6]: x = F.avg_pool2d(x, 2, 2) latents = encode(x[None, ...].cuda()) f = decode(latents) r = torch.cat([x[None, ...].detach().cpu(), f.detach().cpu()], dim=3) os.makedirs('make_figures/output/pioneer/', exist_ok=True) save_image(f.detach().cpu() * 0.5 + 0.5, 'make_figures/output/pioneer/%s_alae.png' % filename[:-9], nrow=1, pad_value=1.0) make(paths) if __name__ == "__main__": gpu_count = 1 run(sample, get_cfg_defaults(), description='ALAE-reconstructions-celeb-hq256-on-pioneer-examples', default_config='configs/celeba-hq256.yaml', world_size=gpu_count, write_log=False)
lod2batch.step() # if lod2batch.is_time_to_save(): # checkpointer.save("model_tmp_intermediate_lod%d" % lod_for_saving_model) if lod2batch.is_time_to_report(): save_sample(lod2batch, tracker, sample, samplez, x, logger, model_s, cfg, encoder_optimizer, generator_optimizer, output_folder) scheduler.step() if epoch % 20 == 0: save(epoch) save_sample(lod2batch, tracker, sample, samplez, x, logger, model_s, cfg, encoder_optimizer, generator_optimizer, output_folder) logger.info("Training finish!... save training results") if epoch is not None: save(epoch) best_model_name, best_model_score = scores_list[0] for model_name, model_score in scores_list: if model_score >= best_model_score: best_model_name, best_model_score = model_name, model_score checkpointer.tag_best_checkpoint(best_model_name) if __name__ == "__main__": gpu_count = torch.cuda.device_count() run(train, get_cfg_defaults(), description='', default_config='configs/mnist_os.yaml', world_size=gpu_count)
lod_for_saving_model = lod2batch.lod lod2batch.step() if local_rank == 0: if lod2batch.is_time_to_save(): checkpointer.save("model_tmp_intermediate_lod%d" % lod_for_saving_model) if lod2batch.is_time_to_report(): save_sample(lod2batch, tracker, sample, samplez, x, logger, model_s, cfg, encoder_optimizer, decoder_optimizer) scheduler.step() if local_rank == 0: checkpointer.save("model_tmp_lod%d" % lod_for_saving_model) save_sample(lod2batch, tracker, sample, samplez, x, logger, model_s, cfg, encoder_optimizer, decoder_optimizer) logger.info("Training finish!... save training results") if local_rank == 0: checkpointer.save("model_final").wait() if __name__ == "__main__": gpu_count = torch.cuda.device_count() run(train, get_cfg_defaults(), description='StyleGAN', default_config='configs/ffhq.yaml', world_size=gpu_count)
for i in range(src_len): save_image(src_originals[i] * 0.5 + 0.5, 'style_mixing/output/%s/source_%d.png' % (cfg.NAME, i)) place(canvas, src_originals[i], 1 + i, 0) for i in range(dst_len): save_image(dst_originals[i] * 0.5 + 0.5, 'style_mixing/output/%s/dst_coarse_%d.png' % (cfg.NAME, i)) place(canvas, dst_originals[i], 0, 1 + i) style_ranges = [range(0, 4)] * 3 + [range(4, 8)] * 2 + [range(8, layer_count * 2)] def mix_styles(style_src, style_dst, r): style = style_dst.clone() style[:, r] = style_src[:, r] return style for row in range(dst_len): row_latents = torch.stack([dst_latents[row]] * src_len) style = mix_styles(src_latents, row_latents, style_ranges[row]) rec = model.decoder(style, layer_count - 1, 1, noise=True) for j in range(rec.shape[0]): save_image(rec[j] * 0.5 + 0.5, 'style_mixing/output/%s/rec_coarse_%d_%d.png' % (cfg.NAME, row, j)) place(canvas, rec[j], 1 + j, 1 + row) save_image(torch.Tensor(canvas), 'style_mixing/output/%s/stylemix.png' % cfg.NAME) if __name__ == "__main__": gpu_count = 1 run(main, get_cfg_defaults(), description='ALAE-style-mixing', default_config='configs/ffhq.yaml', world_size=gpu_count, write_log=False)
# Launcher # http://blog.tvalacarta.info/plugin-xbmc/tvalacarta/ #------------------------------------------------------------ # Constantes __plugin__ = "tvalacarta" __author__ = "tvalacarta" __url__ = "http://blog.tvalacarta.info/plugin-xbmc/tvalacarta/" __date__ = "1 Septiembre 2010" __version__ = "2.6" import os import sys import xbmc xbmc.output("[default.py] tvalacarta init...") # Configura los directorios donde hay librerías #librerias = xbmc.translatePath( os.path.join( os.getcwd(), 'resources', 'lib' ) ) #sys.path.append (librerias) #librerias = xbmc.translatePath( os.path.join( os.getcwd(), 'channels' ) ) #sys.path.append (librerias) #librerias = xbmc.translatePath( os.path.join( os.getcwd(), 'servers' ) ) #sys.path.append (librerias) librerias = xbmc.translatePath(os.path.join(os.getcwd(), 'youtubeAPI')) sys.path.append(librerias) # Ejecuta el programa principal import launcher launcher.run()
extra_checkpoint_data = checkpointer.load() last_epoch = list(extra_checkpoint_data['auxiliary'] ['scheduler'].values())[0]['last_epoch'] logger.info("Model trained for %d epochs" % last_epoch) model.eval() layer_count = cfg.MODEL.LAYER_COUNT logger.info("Evaluating LPIPS metric") decoder = nn.DataParallel(decoder) encoder = nn.DataParallel(encoder) with torch.no_grad(): ppl = LPIPS(cfg, num_images=10000, minibatch_size=16 * torch.cuda.device_count()) ppl.evaluate(logger, mapping_fl, decoder, encoder, cfg.DATASET.MAX_RESOLUTION_LEVEL - 2) if __name__ == "__main__": gpu_count = 1 run(sample, get_cfg_defaults(), description='ALAE-lpips', default_config='configs/experiment_celeba.yaml', world_size=gpu_count, write_log="metrics/lpips_score.txt")
novelty_detector = model_s, bin_edges, counts, gennorm_param, percentages = cfg.DATASET.PERCENTAGES # percentages = [50] results = {} for p in percentages: # plt.figure(num=None, figsize=(8, 6), dpi=180, facecolor='w', edgecolor='k') alpha, beta, threshold, _ = compute_threshold_coeffs( cfg, logger, valid_set, inliner_classes, p, novelty_detector) with open( os.path.join(output_folder, 'coeffs_percentage_%d.txt' % int(p)), 'w') as f: f.write("%f %f %f\n" % (alpha, beta, threshold)) results[p] = test(cfg, logger, test_set, inliner_classes, p, novelty_detector, alpha, beta, threshold, output_folder) return results if __name__ == "__main__": run(main, get_cfg_defaults(), description='', default_config='configs/mnist.yaml', world_size=1, folding_id=0, inliner_classes=[3])
canvas.append(r) return canvas def chunker_list(seq, n): return [seq[i * n:(i + 1) * n] for i in range((len(seq) + n - 1) // n)] paths = chunker_list(paths, 8 * 3) path = './make_figures/output' os.makedirs(path, exist_ok=True) os.makedirs(os.path.join(path, cfg.NAME), exist_ok=True) for i, chunk in enumerate(paths): canvas = make(chunk) canvas = torch.cat(canvas, dim=0) save_path = './make_figures/output/%s/reconstructions_%d.png' % ( cfg.NAME, i) os.makedirs(os.path.dirname(save_path), exist_ok=True) save_image(canvas * 0.5 + 0.5, save_path, nrow=3, pad_value=1.0) if __name__ == "__main__": gpu_count = 1 run(sample, get_cfg_defaults(), description='SoftIntroVAE-figure-reconstructions-paged', default_config='./configs/ffhq256.yaml', world_size=gpu_count, write_log=False)
save_image(src_originals[i] * 0.5 + 0.5, './style_mixing/output/%s/source_%d.png' % (cfg.NAME, i)) place(canvas, src_originals[i], 1 + i, 0) for i in range(dst_len): save_image(dst_originals[i] * 0.5 + 0.5, './style_mixing/output/%s/dst_coarse_%d.png' % (cfg.NAME, i)) place(canvas, dst_originals[i], 0, 1 + i) style_ranges = [range(0, 4)] * 3 + [range(4, 8)] * 2 + [range(8, layer_count * 2)] def mix_styles(style_src, style_dst, r): style = style_dst.clone() style[:, r] = style_src[:, r] return style for row in range(dst_len): row_latents = torch.stack([dst_latents[row]] * src_len) style = mix_styles(src_latents, row_latents, style_ranges[row]) rec = model.decoder(style, layer_count - 1, 1, noise=True) for j in range(rec.shape[0]): save_image(rec[j] * 0.5 + 0.5, './style_mixing/output/%s/rec_coarse_%d_%d.png' % (cfg.NAME, row, j)) place(canvas, rec[j], 1 + j, 1 + row) save_image(torch.Tensor(canvas), './style_mixing/output/%s/stylemix.png' % cfg.NAME) if __name__ == "__main__": gpu_count = 1 run(main, get_cfg_defaults(), description='SandwichStyleVAE-style-mixing', default_config='./configs/celeba-hq256-generate.yaml', world_size=gpu_count, write_log=False)
lod_for_saving_model = lod2batch.lod lod2batch.step() if local_rank == 0: if lod2batch.is_time_to_save(): checkpointer.save("model_tmp_intermediate_lod%d" % lod_for_saving_model) if lod2batch.is_time_to_report(): save_sample(lod2batch, tracker, sample, samplez, x, logger, model_s, cfg, encoder_optimizer, decoder_optimizer) scheduler.step() if local_rank == 0: checkpointer.save("model_tmp_lod%d" % lod_for_saving_model) save_sample(lod2batch, tracker, sample, samplez, x, logger, model_s, cfg, encoder_optimizer, decoder_optimizer) logger.info("Training finish!... save training results") if local_rank == 0: checkpointer.save("model_final").wait() if __name__ == "__main__": gpu_count = torch.cuda.device_count() run(train, get_cfg_defaults(), description='StyleGAN', default_config='configs/experiment_celeba_sep.yaml', world_size=gpu_count)
save_sample(lod2batch, tracker, sample, samplez, x, logger, model_s, cfg, encoder_optimizer, decoder_optimizer) scheduler.step() mean_diff_kl = np.mean(diff_kls) print("mean diff kl: ", mean_diff_kl) if epoch > num_vae_epochs - 1: kls_real.append(np.mean(batch_kls_real)) kls_fake.append(np.mean(batch_kls_fake)) rec_errs.append(np.mean(batch_rec_errs)) if local_rank == 0: checkpointer.save("model_tmp_lod%d" % lod_for_saving_model) save_sample(lod2batch, tracker, sample, samplez, x, logger, model_s, cfg, encoder_optimizer, decoder_optimizer) logger.info("Training finish!... save training results") if local_rank == 0: checkpointer.save("model_final").wait() if __name__ == "__main__": gpu_count = torch.cuda.device_count() run(train, get_cfg_defaults(), description='StyleSoftIntroVAE', default_config='./configs/ffhq256.yaml', world_size=gpu_count)