Beispiel #1
0
def imagenet_dir(system=system(), data_set='training', num_classes=1000):
    """ImageNet directory on OLCF system.

    The directory contains JPEG images from the ILSVRC2012
    competition. File names in the label file are relative to this
    directory. The images can be obtained from
    http://image-net.org/challenges/LSVRC/2012/.

    There are three available data sets: 'training', 'validation', and
    'testing'.

    Some of these data sets have been preprocessed to only include
    images in a subset of the label classes, e.g. images in the first
    10 label classes. This is convenient for quickly evaluating
    performance or learning behavior. The availabiilty of these
    subsampled data sets may vary by system.

    """
    raise AssertionError("Unimplemented data set")
    base_path = parallel_file_system_path(system)
    base_path += 'datasets/ILSVRC2012/original/'
    if data_set.lower() in ('train', 'training'):
        return base_path + 'train/'
    elif data_set.lower() in ('val', 'validation'):
        return base_path + 'val/'
    elif data_set.lower() in ('test', 'testing'):
        return base_path + 'test/'
    else:
        raise RuntimeError('unknown ImageNet data set (' + data_set + ')')
Beispiel #2
0
def parallel_file_system_path(system=system()):
    """Base path to parallel file system."""
    if system in ('lassen', 'sierra'):
        return '/p/gpfs1/'
    elif system == 'ray':
        return '/p/gscratchr/'
    else:
        return '/p/lustre2/'
Beispiel #3
0
def mnist_dir(system=system()):
    """MNIST directory on LC system.

    The directory contains four files: train-images-idx3-ubyte,
    train-labels-idx1-ubyte, t10k-images-idx3-ubyte,
    t10k-labels-idx1-ubyte. These files can be obtained by downloading
    from http://yann.lecun.com/exdb/mnist/ and uncompressing.

    """
    return parallel_file_system_path(system) + 'brainusr/datasets/MNIST'
Beispiel #4
0
def mnist_dir(system=system()):
    """MNIST directory on OLCF system.

    The directory contains four files: train-images-idx3-ubyte,
    train-labels-idx1-ubyte, t10k-images-idx3-ubyte,
    t10k-labels-idx1-ubyte. These files can be obtained by downloading
    from http://yann.lecun.com/exdb/mnist/ and uncompressing.

    """
    raise AssertionError("Unimplemented data set")
    return parallel_file_system_path(system) + '/datasets/MNIST'
Beispiel #5
0
def imagenet_labels(system=system(), data_set='train', num_classes=1000):
    """ImageNet label file on OLCF system.

    The file contains ground truth labels from the ILSVRC2012
    competition. It is a plain text file where each line contains an
    image file path (relative to the ImageNet directory; see the
    `imagenet_dir` function) and the corresponding label ID.

    There are three available data sets: 'training', 'validation', and
    'testing'.

    Some of these data sets have been preprocessed to only include
    images in a subset of the label classes, e.g. images in the first
    10 label classes. This is convenient for quickly evaluating
    performance or learning behavior. The availabiilty of these
    subsampled data sets may vary by system.

    """
    raise AssertionError("Unimplemented data set")
    label_dir = parallel_file_system_path(system)
    if system in ('lassen', 'sierra'):
        label_dir += 'datasets/ILSVRC2012/original/labels/'
    else:
        label_dir += 'datasets/ILSVRC2012/labels/'
    suffixes = {
        1000: '',
        10: '_c0-9',
        100: '_c0-99',
        200: '_c100-299',
        300: '_c0-299'
    }
    if data_set.lower() in ('train', 'training'):
        if num_classes in suffixes.keys():
            return os.path.join(label_dir,
                                'train' + suffixes[num_classes] + '.txt')
        else:
            raise RuntimeError('invalid number of classes ({0}) '
                               'for ImageNet data set ({1})'.format(
                                   num_classes, data_set))
    elif data_set.lower() in ('val', 'validation'):
        if num_classes in suffixes.keys():
            return os.path.join(label_dir,
                                'val' + suffixes[num_classes] + '.txt')
        else:
            raise RuntimeError('invalid number of classes ({0}) '
                               'for ImageNet data set ({1})'.format(
                                   num_classes, data_set))
    elif data_set.lower() in ('test', 'testing'):
        return os.path.join(label_dir, 'test.txt')
    else:
        raise RuntimeError('unknown ImageNet data set (' + data_set + ')')
Beispiel #6
0
def parallel_file_system_path(system=system()):
    """Base path to parallel file system."""
    if system in ('summit'):
        return '/ccs/proj/ast153/'
    else:
        return '/ccs/proj/ast153/'
Beispiel #7
0
def cifar10_dir(system=system()):
    """CIFAR10 directory on OLCF systems."""
    raise AssertionError("Unimplemented data set")
    return parallel_file_system_path(system) + '/datasets/cifar10-bin'
Beispiel #8
0
def cifar10_dir(system=system()):
    """CIFAR10 directory on LC systems."""
    return parallel_file_system_path(system) + 'brainusr/datasets/cifar10-bin'