def __init__(self, NP, means, mins, maxs, sds, outfile, errlev=0.1, goodchi2=350.0): """ Instantiates the class by synthetically generating data. """ MCMC.__init__(self, TargetAcceptedPoints=1000, NumberOfParams=NP, Mins=mins, Maxs=maxs, SDs=sds, \ write2file=True, outputfilename=outfile, alpha=0.1, debug=False,\ EstimateCovariance=True, CovNum=100, goodchi2=goodchi2) lcurv.readmap() lcurv.mockdata(means,errlev)
def mockdata(): global pars lcurv.readmap() Rp = 39.4 Rn, a, b = 0.4, 0, 0.3 pars = [51, 290, 1.0, Rp, Rn, a, b] pars = np.array(pars) print(pars) errlev = 0.04 lcurv.mockdata(pars, errlev)
def mockdata(): global pars lcurv.readmap() Rp = 39.4 # scaled by 30 Rn,a,b = 0.4, 0, 0.3 print('r_half = ',Rhalf(1,Rn,a,b)*Rp/30) pars = [ 51, 290, 1.0, Rp, Rn, a, b ] pars = np.array(pars) print(pars) errlev = 0.04 lcurv.mockdata(pars,errlev)
def mockdata(): global pars lcurv.readmap() Rp = 39.4 # scaled by 30 Rn, a, b = 0.4, 0, 0.3 print('r_half = ', Rhalf(1, Rn, a, b) * Rp / 30) pars = [51, 290, 1.0, Rp, Rn, a, b] pars = np.array(pars) print(pars) errlev = 0.04 lcurv.mockdata(pars, errlev)
def __init__(self, NP, means, mins, maxs, sds, outfile, errlev=0.1, goodchi2=350.0): """ Instantiates the class by synthetically generating data. """ MCMC.__init__(self, TargetAcceptedPoints=1000, NumberOfParams=NP, Mins=mins, Maxs=maxs, SDs=sds, \ write2file=True, outputfilename=outfile, alpha=0.1, debug=False,\ EstimateCovariance=True, CovNum=100, goodchi2=goodchi2) lcurv.readmap() lcurv.mockdata(means, errlev)
hi = [] for f in (t1, t2, norm, rp, rn, a, b): p.append(f[1]) lo.append(f[0]) hi.append(f[2]) p = numpy.array(p) lo = numpy.array(lo) hi = numpy.array(hi) errlev = 0.05 print(lo) print(p) print(hi) lcurv.mockdata(p, errlev) def resid(p): nobs, x = lcurv.residuals(p) x = x[:nobs] return x lo[0], hi[0] = 750, 850 lo[1], hi[1] = 450, 550 p[0] = 780 p[1] = 480 q = leastsq(resid, p)[0] """
Rn, a, b = 0.4, 0, 0.3 pars = [51, 290] if fname[1] == 'c': pars += [1.0, Rp, Rn, a, b] elif fname[1] == 'g': pars += [1.0, sig, -2, 0, 0] else: print('Filename error') sys.exit() pars = np.array(pars) print(pars) lcurv.readmap() errlev = 0.04 lcurv.mockdata(pars, errlev) chain = np.genfromtxt(fname + '.chain', skip_header=0, skip_footer=1) print(chain.shape) minchis = 1e30 for i in range(chain.shape[0]): x = chain[i, :] if x[1] < minchis: q = x[3:] minchis = x[1] print(q) print(minchis, lcurv.chis(q), 1 - st.chi2.cdf(minchis, pars[1] - pars[0] + 1 - 7)) lcurv.writecurves(q)
hi = [] for f in (t1,t2,norm,rp,rn,a,b): p.append(f[1]) lo.append(f[0]) hi.append(f[2]) p = numpy.array(p) lo = numpy.array(lo) hi = numpy.array(hi) errlev = 0.05 print(lo) print(p) print(hi) lcurv.mockdata(p,errlev) def resid(p): nobs,x = lcurv.residuals(p) x = x[:nobs] return x lo[0],hi[0] = 750,850 lo[1],hi[1] = 450,550 p[0] = 780 p[1] = 480 q = leastsq(resid,p)[0] """ rawlnp,ans = metrop.samp(lnprob, lo, hi, 200)