def run_msms_data(fragment, neutral_loss, mzdiff, ms1, ms2): if len(sys.argv) > 1: K = int(sys.argv[1]) else: K = 300 print "Cross-validation for K=" + str(K) n_folds = 4 n_samples = 500 n_burn = 250 n_thin = 5 alpha = 50.0 / K beta = 0.1 is_num_samples = 10000 is_iters = 1000 ms2lda = Ms2Lda.lcms_data_from_R(fragment, neutral_loss, mzdiff, ms1, ms2) df = ms2lda.df vocab = ms2lda.vocab cv = CrossValidatorLda(df, vocab, K, alpha, beta) cv.cross_validate(n_folds, n_burn, n_samples, n_thin, is_num_samples, is_iters, method="with_mixture")
def run_msms_data(fragment, neutral_loss, mzdiff, ms1, ms2): if len(sys.argv)>1: K = int(sys.argv[1]) else: K = 300 print "Cross-validation for K=" + str(K) n_folds = 4 n_samples = 500 n_burn = 250 n_thin = 5 alpha = 50.0/K beta = 0.1 is_num_samples = 10000 is_iters = 1000 ms2lda = Ms2Lda.lcms_data_from_R(fragment, neutral_loss, mzdiff, ms1, ms2) df = ms2lda.df vocab = ms2lda.vocab cv = CrossValidatorLda(df, vocab, K, alpha, beta) cv.cross_validate(n_folds, n_burn, n_samples, n_thin, is_num_samples, is_iters, method="with_mixture")
from lda_for_fragments import Ms2Lda ms2lda = Ms2Lda.resume_from('notebooks/results/beer3pos.project') ms2lda.do_thresholding(th_doc_topic=0.05, th_topic_word=0.01) ms2lda.print_topic_words() special_nodes = [ ('doc_21213', '#CC0000'), # maroon ('doc_21758', 'gold'), ('doc_21182', 'green'), ('topic_240', '#CC0000'), # maroon ('topic_76', 'aqua'), ('topic_253', '#ff1493') # deep pink ] ms2lda.plot_lda_fragments(consistency=0.0, interactive=True, to_highlight=special_nodes)