Beispiel #1
0
def main():
    R = Region([4, 4], {'x': legion.float64})

    # Create a partition of R.
    P = Partition.equal(R, [2, 2])

    # Same as above, broken explicitly into two steps.
    IP2 = Ipartition.equal(R.ispace, [2, 2])
    P2 = Partition(R, IP2)

    assert P.color_space.volume == 4

    # Grab a subregion of P.
    R00 = P[0, 0]

    print('Parent region has volume %s' % R.ispace.volume)
    assert R.ispace.volume == 16
    assert check_subregion(R00).get() == 4

    # Partition the subregion again.
    P00 = Partition.equal(R00, [2, 2])
    total_volume = 0
    for x in range(2):
        for y in range(2):
            R00xy = P00[x, y]
            total_volume += check_subregion(R00xy).get()
    assert total_volume == 4

    # An easy way to iterate subregions:
    for Rij in P:
        assert Rij.ispace.volume == 4
Beispiel #2
0
def main():
    R = Region([4, 4], {'x': legion.float64})

    legion.fill(R, 'x', 0)

    # Create a partition of R.
    colors = [2, 2]
    transform = [[2, 0], [0, 2]]
    extent = [2, 2]
    P = Partition.restrict(R, colors, transform, extent)

    # Again, with different parameters.
    colors2 = [3]
    transform2 = [[1], [2]]
    extent2 = Domain([2, 2], [-1, -1])
    P2 = Partition.restrict(R, colors2, transform2, extent2)

    assert P.color_space.volume == 4
    assert P2.color_space.volume == 3

    # Grab a subregion of P.
    R00 = P[0, 0]

    print('Parent region has volume %s' % R.ispace.volume)
    assert R.ispace.volume == 16
    assert check_subregion(R00).get() == 4
    for Rij in P:
        assert check_subregion(Rij).get() == 4
    assert check_subregion(P2[0]).get() == 1
    assert check_subregion(P2[1]).get() == 4
    assert check_subregion(P2[2]).get() == 2
Beispiel #3
0
def init_partitions(graphs, num_fields):
    result = []
    primary = []
    secondary = []

    scratch = []
    p_scratch = []

    dset_max_args = []

    fspace = Fspace(dict((str(x), legion.uint8) for x in range(num_fields)))

    for graph in graphs:
        colors = Ispace([graph.max_width])
        result.append(
            Region([graph.max_width * graph.output_bytes_per_task], fspace))
        primary.append(Partition.equal(result[-1], colors))

        for field in fspace.keys():
            legion.fill(result[-1], field, 0)

        num_dsets = c.task_graph_max_dependence_sets(graph)
        secondary.append([])
        dset_max_args.append([])
        for dset in range(num_dsets):
            secondary[-1].append([])
            num_args = 0
            for arg in range(max_args):
                secondary[-1][-1].append(Partition.pending(result[-1], colors))
                for point in range(graph.max_width):
                    deps = list(task_graph_dependencies(graph, dset, point))
                    num_args = max(num_args, len(deps))
                    secondary[-1][-1][-1].union(
                        [point],
                        [primary[-1][deps[arg]]] if arg < len(deps) else [])
            dset_max_args[-1].append(num_args)

        if graph.scratch_bytes_per_task > 0:
            scratch.append(
                Region([graph.max_width * graph.scratch_bytes_per_task],
                       fspace))
            p_scratch.append(Partition.equal(scratch[-1], colors))
            index_launch(colors, init_scratch_task, p_scratch[-1][ID])
        else:
            scratch.append(None)
            p_scratch.append(None)

    return result, primary, secondary, scratch, p_scratch, dset_max_args
Beispiel #4
0
def main():
    futures = []
    for i in IndexLaunch(10):
        futures.append(hi(i))
    for i, future in enumerate(futures):
        print("got %s" % future.get())
        assert int(future.get()) == i

    # Same in 2 dimensions.
    futures = []
    for point in IndexLaunch([3, 3]):
        futures.append(hi(point))
    for i, point in enumerate(Domain([3, 3])):
        assert futures[i].get() == point

    R = Region([4, 4], {'x': legion.float64})
    P = Partition.equal(R, [2, 2])
    legion.fill(R, 'x', 0)

    for i in IndexLaunch([2, 2]):
        hello(R, i)

    for i in IndexLaunch([2, 2]):
        hello(P[i], i)

    # Again, with a more explicit syntax.
    # ID is the name of the (implicit) loop variable.
    futures = index_launch([3, 3], hi, ID)
    for point in Domain([3, 3]):
        assert futures[point].get() == point

    index_launch([2, 2], hello, R, ID)
    index_launch([2, 2], hello, P[ID], ID)
Beispiel #5
0
def main():
    R = Region([4, 4], {'point': legion.int2d})
    init_field(R)

    P = Partition.restrict(R, [2, 2], np.eye(2) * 2, [2, 2])
    Q = Partition.image(R, P, 'point', [2, 2])

    assert P.color_space.volume == 4
    assert P[0, 0].ispace.volume == 4
    assert P[0, 1].ispace.volume == 4
    assert P[1, 0].ispace.volume == 4
    assert P[1, 1].ispace.volume == 4

    assert Q[0, 0].ispace.volume == 2
    assert Q[0, 1].ispace.volume == 4
    assert Q[1, 0].ispace.volume == 3
    assert Q[1, 1].ispace.volume == 4
Beispiel #6
0
def make_private_partition(points, tiles, n, nt):
    colors, colors_part = make_colors_part(tiles)
    npoints = n + nt * 2 * RADIUS
    for tile in np.ndindex(tuple(nt)):
        idx = np.array(tile)
        colors.rect[tile] = (idx * npoints / nt, (idx + 1) * npoints / nt - 1)
    return Partition.image(points, colors_part, 'rect', tiles,
                           disjoint_complete)
Beispiel #7
0
def make_ghost_y_partition(points, tiles, n, nt, direction):
    colors, colors_part = make_colors_part(tiles)
    for tile in np.ndindex(tuple(nt)):
        idx = np.array(tile)
        colors.rect[tile] = (
            [idx[0]*n[0]/nt[0], clamp((idx[1]+direction)*RADIUS, 0, nt[1]*RADIUS)],
            [(idx[0]+1)*n[0]/nt[0] - 1, clamp((idx[1]+1+direction)*RADIUS - 1, -1, nt[1]*RADIUS - 1)])
    kind = disjoint_complete if direction == 0 else disjoint_incomplete
    return Partition.image(points, colors_part, 'rect', tiles, kind)
Beispiel #8
0
def make_interior_partition(points, tiles, n, nt):
    colors, colors_part = make_colors_part(tiles)
    npoints = n + nt * 2 * RADIUS
    for tile in np.ndindex(tuple(nt)):
        idx = np.array(tile)
        colors.rect[tile] = (idx * npoints / nt + RADIUS,
                             (idx + 1) * npoints / nt - 1 - RADIUS)
    return Partition.create_by_image(points, colors_part, 'rect', tiles,
                                     disjoint_incomplete)
Beispiel #9
0
def make_exterior_partition(points, tiles, n, nt):
    colors, colors_part = make_colors_part(tiles)
    npoints = n + nt*2*RADIUS
    for tile in np.ndindex(tuple(nt)):
        idx = np.array(tile)
        loff = (idx != 0) * RADIUS
        hoff = (idx != nt - 1) * RADIUS
        colors.rect[tile] = (
            idx*npoints/nt + loff,
            (idx+1)*npoints/nt - 1 - hoff)
    return Partition.image(points, colors_part, 'rect', tiles, disjoint_incomplete)
Beispiel #10
0
def main():
    R = Region([4, 4], {'color': legion.int2d})
    init_field(R)

    P = Partition.by_field(R, 'color', [2, 2])

    assert P.color_space.volume == 4

    print('Parent region has volume %s' % R.ispace.volume)
    assert R.ispace.volume == 16
    assert P[0, 0].ispace.volume == 4
    assert P[0, 1].ispace.volume == 3
    assert P[1, 0].ispace.volume == 3
    assert P[1, 1].ispace.volume == 6
Beispiel #11
0
def main():
    R = Region([4, 4], {'x': legion.float64})
    P = Partition.equal(R, [2, 2])
    legion.fill(R, 'x', 0)

    trace1 = Trace()
    for t in range(5):
        with trace1:
            for i in IndexLaunch([2, 2]):
                look(R, i)

            for i in IndexLaunch([2, 2]):
                incr(P[i], i)

    trace2 = Trace()
    for t in range(5):
        with trace2:
            index_launch([2, 2], look, R, ID)
            index_launch([2, 2], incr, P[ID], ID)
Beispiel #12
0
def main():
    conf = parse_args(legion.input_args(True))

    assert conf.num_pieces % conf.pieces_per_superpiece == 0, "pieces should be evenly distributed to superpieces"
    conf.shared_nodes_per_piece = int(
        math.ceil(conf.nodes_per_piece * conf.pct_shared_nodes / 100.0))
    print(
        "circuit settings: loops=%d prune=%d pieces=%d (pieces/superpiece=%d) nodes/piece=%d (nodes/piece=%d) wires/piece=%d pct_in_piece=%d seed=%d"
        % (conf.num_loops, conf.prune, conf.num_pieces,
           conf.pieces_per_superpiece, conf.nodes_per_piece,
           conf.shared_nodes_per_piece, conf.wires_per_piece,
           conf.pct_wire_in_piece, conf.random_seed))

    num_pieces = conf.num_pieces
    num_superpieces = conf.num_pieces // conf.pieces_per_superpiece
    num_circuit_nodes = num_pieces * conf.nodes_per_piece
    num_circuit_wires = num_pieces * conf.wires_per_piece

    node = Fspace.create(
        OrderedDict([
            ('node_cap', legion.float32),
            ('leakage', legion.float32),
            ('charge', legion.float32),
            ('node_voltage', legion.float32),
        ]))
    wire = Fspace.create(
        OrderedDict([
            ('in_ptr', legion.int64),
            ('in_ptr_r', legion.uint8),
            ('out_ptr', legion.int64),
            ('out_ptr_r', legion.uint8),
            ('inductance', legion.float32),
            ('resistance', legion.float32),
            ('wire_cap', legion.float32),
        ] + [('current_%d' % i, legion.float32)
             for i in range(10)] + [('voltage_%d' % i, legion.float32)
                                    for i in range(9)]))

    all_nodes = Region.create([num_circuit_nodes], node)
    all_wires = Region.create([num_circuit_wires], wire)

    node_size = np.dtype(list(
        map(lambda x: (x[0], x[1].numpy_type), node.field_types.items())),
                         align=True).itemsize
    wire_size = np.dtype(list(
        map(lambda x: (x[0], x[1].numpy_type), wire.field_types.items())),
                         align=True).itemsize
    print("Circuit memory usage:")
    print("  Nodes : %10d * %4d bytes = %12d bytes" %
          (num_circuit_nodes, node_size, num_circuit_nodes * node_size))
    print("  Wires : %10d * %4d bytes = %12d bytes" %
          (num_circuit_wires, wire_size, num_circuit_wires * wire_size))
    total = ((num_circuit_nodes * node_size) + (num_circuit_wires * wire_size))
    print("  Total                             %12d bytes" % total)

    snpp = conf.shared_nodes_per_piece
    pnpp = conf.nodes_per_piece - conf.shared_nodes_per_piece
    pps = conf.pieces_per_superpiece
    num_shared_nodes = num_pieces * snpp

    privacy_coloring = Region.create([2], {'rect': legion.rect1d})
    np.copyto(privacy_coloring.rect,
              np.array([(num_shared_nodes, num_circuit_nodes - 1),
                        (0, num_shared_nodes - 1)],
                       dtype=privacy_coloring.rect.dtype),
              casting='no')
    privacy_part = Partition.create_by_restriction(privacy_coloring, [2],
                                                   np.eye(1), [1],
                                                   disjoint_complete)
    all_nodes_part = Partition.create_by_image(all_nodes, privacy_part, 'rect',
                                               [2], disjoint_complete)

    all_private = all_nodes_part[0]
    all_shared = all_nodes_part[1]

    launch_domain = Ispace.create([num_superpieces])

    private_part = Partition.create_by_restriction(
        all_private, launch_domain,
        np.eye(1) * pnpp * pps,
        Domain.create([pnpp * pps], [num_shared_nodes]), disjoint_complete)
    shared_part = Partition.create_by_restriction(all_shared, launch_domain,
                                                  np.eye(1) * snpp * pps,
                                                  [snpp * pps],
                                                  disjoint_complete)

    wires_part = Partition.create_equal(all_wires, launch_domain)

    ghost_ranges = Region.create([num_superpieces],
                                 OrderedDict([('rect', legion.rect1d)]))
    ghost_ranges_part = Partition.create_equal(ghost_ranges, launch_domain)

    for i in IndexLaunch(launch_domain):
        init_piece(int(i), conf[0], ghost_ranges_part[i], private_part[i],
                   shared_part[i], all_shared, wires_part[i])

    ghost_part = Partition.create_by_image(all_shared, ghost_ranges_part,
                                           'rect', launch_domain)

    for i in IndexLaunch(launch_domain):
        init_pointers(private_part[i], shared_part[i], ghost_part[i],
                      wires_part[i])

    steps = conf.steps
    prune = conf.prune
    num_loops = conf.num_loops + 2 * prune

    for j in range(num_loops):
        for i in IndexLaunch(launch_domain):
            calculate_new_currents(j == prune, steps, private_part[i],
                                   shared_part[i], ghost_part[i],
                                   wires_part[i])
        for i in IndexLaunch(launch_domain):
            distribute_charge(private_part[i], shared_part[i], ghost_part[i],
                              wires_part[i])
        for i in IndexLaunch(launch_domain):
            update_voltages(j == num_loops - prune - 1, private_part[i],
                            shared_part[i])
Beispiel #13
0
def make_colors_part(tiles):
    colors = Region(tiles, {'rect': legion.rect2d})
    colors_part = Partition.restrict(colors, tiles, np.eye(2), [1, 1], disjoint_complete)
    return colors, colors_part
Beispiel #14
0
def solve(n_runs):
    n_procs = Tunable.select(Tunable.GLOBAL_PYS).get()
    print(f"Working with {n_procs} processes\n")

    # Allocate data structures.
    n_events_per_node = 100
    event_raw_shape = (4, 512, 512)
    images = Region(
        (n_events_per_node * n_procs,) + event_raw_shape, {'image': legion.float64})
    orientations = Region(
        (n_events_per_node * n_procs, 4), {'orientation': legion.float32})
    active = Region((n_procs,), {'active': legion.uint32})
    legion.fill(images, 'image', 0)
    legion.fill(orientations, 'orientation', 0)
    legion.fill(active, 'active', 0)
    images_part = Partition.restrict(
        images, [n_procs], numpy.eye(4, 1) * n_events_per_node, (n_events_per_node,) + event_raw_shape)
    orient_part = Partition.restrict(
        orientations, [n_procs], numpy.eye(2, 1) * n_events_per_node, (n_events_per_node, 4))
    active_part = Partition.restrict(
        active, [n_procs], numpy.eye(1, 1), (1,))

    volume_shape = (N_POINTS,) * 3
    diffraction = Region(volume_shape, {
        'accumulator': legion.float32,
        'weight': legion.float32})
    legion.fill(diffraction, 'accumulator', 0.)
    legion.fill(diffraction, 'weight', 0.)

    n_reconstructions = 4
    reconstructions = []
    for i in range(n_reconstructions):
        reconstruction = Region(volume_shape, {
            'support': legion.bool_,
            'rho': legion.complex64})
        legion.fill(reconstruction, 'support', False)
        legion.fill(reconstruction, 'rho', 0.)
        reconstructions.append(reconstruction)

    # Load pixel momentum
    pixels = Region(event_raw_shape + (3,), {'momentum': legion.float64})
    legion.fill(pixels, 'momentum', 0.)
    max_pixel_dist = load_pixels(pixels).get()
    voxel_length = 2 * max_pixel_dist / (N_POINTS - 1)

    images_per_solve = n_events_per_node
    iterations_ahead = 2

    complete = False
    iteration = 0
    fences = []
    n_events_ready = []
    while not complete or iteration < 50:
        if not complete:
            # Obtain the newest copy of the data.
            with MustEpochLaunch([n_procs]):
                index_launch(
                    [n_procs], data_collector.fill_data_region,
                    images_part[ID], orient_part[ID], active_part[ID], images_per_solve)

            # Preprocess data.
            index_launch(
                [n_procs], preprocess,
                images_part[ID], orient_part[ID], active_part[ID], pixels, diffraction,
                voxel_length)

        # Run solver.
        assert n_reconstructions == 4
        hio_loop = 100
        er_loop = hio_loop // 2
        solve_step(diffraction, reconstructions[0], 0, iteration,
                   hio_loop, .1, er_loop, .14)
        solve_step(diffraction, reconstructions[1], 1, iteration,
                   hio_loop, .05, er_loop, .14)
        solve_step(diffraction, reconstructions[2], 2, iteration,
                   hio_loop, .1, er_loop, .16)
        solve_step(diffraction, reconstructions[3], 3, iteration,
                   hio_loop, .05, er_loop, .16)

        if not complete:
            # Make sure we don't run more than N iterations ahead.
            fences.append(legion.execution_fence(future=True))
            if iteration - iterations_ahead >= 0:
                fences[iteration - iterations_ahead].get()

            # Check that all runs have been read and that all events have been consumed.
            if data_collector.get_num_runs_complete() == n_runs:
                n_events_ready.append(index_launch([n_procs], data_collector.get_num_events_ready, active_part[ID], reduce='+'))
                if iteration - iterations_ahead >= 0:
                    ready = n_events_ready[iteration - iterations_ahead].get()
                    print(f'All runs complete, {ready} events remaining', flush=True)
                    complete = ready == 0

        iteration += 1

    ##### -------------------------------------------------------------- #####

    # for idx in range(n_procs):
    #     save_images(images_part[idx], idx, point=idx)
    for i in range(n_reconstructions):
        save_rho(reconstructions[i], i)
    save_diffraction(diffraction, 0)
Beispiel #15
0
def main():
    print_once('Running pennant_fast.py')

    conf = read_config().get()

    zone = Fspace(
        OrderedDict([
            ('zxp_x', legion.float64),
            ('zxp_y', legion.float64),
            ('zx_x', legion.float64),
            ('zx_y', legion.float64),
            ('zareap', legion.float64),
            ('zarea', legion.float64),
            ('zvol0', legion.float64),
            ('zvolp', legion.float64),
            ('zvol', legion.float64),
            ('zdl', legion.float64),
            ('zm', legion.float64),
            ('zrp', legion.float64),
            ('zr', legion.float64),
            ('ze', legion.float64),
            ('zetot', legion.float64),
            ('zw', legion.float64),
            ('zwrate', legion.float64),
            ('zp', legion.float64),
            ('zss', legion.float64),
            ('zdu', legion.float64),
            ('zuc_x', legion.float64),
            ('zuc_y', legion.float64),
            ('z0tmp', legion.float64),
            ('znump', legion.uint8),
        ]))

    point = Fspace(
        OrderedDict([
            ('px0_x', legion.float64),
            ('px0_y', legion.float64),
            ('pxp_x', legion.float64),
            ('pxp_y', legion.float64),
            ('px_x', legion.float64),
            ('px_y', legion.float64),
            ('pu0_x', legion.float64),
            ('pu0_y', legion.float64),
            ('pu_x', legion.float64),
            ('pu_y', legion.float64),
            ('pap_x', legion.float64),
            ('pap_y', legion.float64),
            ('pf_x', legion.float64),
            ('pf_y', legion.float64),
            ('pmaswt', legion.float64),
            ('has_bcx', legion.bool_),
            ('has_bcy', legion.bool_),
        ]))

    side = Fspace(
        OrderedDict([
            ('mapsz', legion.int1d),
            ('mapsp1', legion.int1d),
            ('mapsp1_r', legion.uint8),
            ('mapsp2', legion.int1d),
            ('mapsp2_r', legion.uint8),
            ('mapss3', legion.int1d),
            ('mapss4', legion.int1d),
            ('sareap', legion.float64),
            ('sarea', legion.float64),
            ('svolp', legion.float64),
            ('svol', legion.float64),
            ('ssurfp_x', legion.float64),
            ('ssurfp_y', legion.float64),
            ('smf', legion.float64),
            ('sfp_x', legion.float64),
            ('sfp_y', legion.float64),
            ('sft_x', legion.float64),
            ('sft_y', legion.float64),
            ('sfq_x', legion.float64),
            ('sfq_y', legion.float64),
            ('exp_x', legion.float64),
            ('exp_y', legion.float64),
            ('ex_x', legion.float64),
            ('ex_y', legion.float64),
            ('elen', legion.float64),
            ('carea', legion.float64),
            ('cevol', legion.float64),
            ('cdu', legion.float64),
            ('cdiv', legion.float64),
            ('ccos', legion.float64),
            ('cqe1_x', legion.float64),
            ('cqe1_y', legion.float64),
            ('cqe2_x', legion.float64),
            ('cqe2_y', legion.float64),
        ]))

    span = Fspace(
        OrderedDict([
            ('start', legion.int64),
            ('stop', legion.int64),
            ('internal', legion.bool_),
        ]))

    zones = Region([conf.nz], zone)
    points = Region([conf.np], point)
    sides = Region([conf.ns], side)

    assert conf.par_init, 'parallel initialization required'

    old_seq_init = conf.seq_init
    if conf.seq_init:
        print('Warning: Sequential initialization not supported, skipping')
        # Since we aren't actually doing sequential intialization, we
        # have to turn this off or the verification in parallel
        # initialization will fail.
        conf.seq_init = False

    assert conf.par_init
    partitions = read_partitions(zones, points, sides, conf).get()

    conf.nspans_zones = partitions.nspans_zones
    conf.nspans_points = partitions.nspans_points

    pieces = Ispace([conf.npieces])

    zones_part = create_partition(True, zones, partitions.rz_all_p, pieces)

    points_part = create_partition(True, points, partitions.rp_all_p, [2])
    private = points_part[0]
    ghost = points_part[1]

    private_part = create_partition(True, private, partitions.rp_all_private_p,
                                    pieces)
    ghost_part = create_partition(False, ghost, partitions.rp_all_ghost_p,
                                  pieces)
    shared_part = create_partition(True, ghost, partitions.rp_all_shared_p,
                                   pieces)

    sides_part = create_partition(True, sides, partitions.rs_all_p, pieces)

    zone_spans = Region([conf.npieces * conf.nspans_zones], span)
    zone_spans_part = Partition.equal(zone_spans, pieces)

    private_spans = Region([conf.npieces * conf.nspans_points], span)
    private_spans_part = Partition.equal(private_spans, pieces)

    shared_spans = Region([conf.npieces * conf.nspans_points], span)
    shared_spans_part = Partition.equal(shared_spans, pieces)

    side_spans = Region([conf.npieces * conf.nspans_zones], span)
    side_spans_part = Partition.equal(side_spans, pieces)

    for region in [zone_spans, private_spans, shared_spans, side_spans]:
        for field in ['start', 'stop']:
            legion.fill(region, field, 0)

    if old_seq_init:
        # FIXME: These fields are actually never used, fill them here
        # just to avoid validation errors later.
        legion.fill(points, 'pap_x', 0)
        legion.fill(points, 'pap_y', 0)
        legion.fill(sides, 'svolp', 0)
        legion.fill(sides, 'svol', 0)
        legion.fill(sides, 'ssurfp_x', 0)
        legion.fill(sides, 'ssurfp_y', 0)

    if conf.par_init:
        for i in IndexLaunch(pieces):
            initialize_topology(conf, int(i), zones_part[i], private_part[i],
                                shared_part[i], ghost_part[i], sides_part[i])

        for i in IndexLaunch(pieces):
            initialize_spans(conf, int(i), zone_spans_part[i],
                             private_spans_part[i], shared_spans_part[i],
                             side_spans_part[i])

    for i in IndexLaunch(pieces):
        init_pointers(zones_part[i], private_part[i], ghost_part[i],
                      sides_part[i], side_spans_part[i])

    for i in IndexLaunch(pieces):
        init_mesh_zones(zones_part[i], zone_spans_part[i])

    for i in IndexLaunch(pieces):
        calc_centers_full(zones_part[i], private_part[i], ghost_part[i],
                          sides_part[i], side_spans_part[i], True)

    for i in IndexLaunch(pieces):
        calc_volumes_full(zones_part[i], private_part[i], ghost_part[i],
                          sides_part[i], side_spans_part[i], True)

    for i in IndexLaunch(pieces):
        init_side_fracs(zones_part[i], private_part[i], ghost_part[i],
                        sides_part[i], side_spans_part[i])

    for i in IndexLaunch(pieces):
        init_hydro(zones_part[i], zone_spans_part[i], conf.rinit, conf.einit,
                   conf.rinitsub, conf.einitsub, conf.subregion[0],
                   conf.subregion[1], conf.subregion[2], conf.subregion[3])

    for i in IndexLaunch(pieces):
        init_radial_velocity(private_part[i], private_spans_part[i],
                             conf.uinitradial)

    for i in IndexLaunch(pieces):
        init_radial_velocity(shared_part[i], shared_spans_part[i],
                             conf.uinitradial)

    cycle = 0
    cstop = conf.cstop + 2 * conf.prune
    time = 0.0
    dt = Future(conf.dtmax, legion.float64)
    dthydro = conf.dtmax
    while cycle < cstop and time < conf.tstop:
        if cycle == conf.prune:
            legion.execution_fence(block=True)
            start_time = legion.c.legion_get_current_time_in_nanos()

        dt = calc_global_dt(dt, conf.dtfac, conf.dtinit, conf.dtmax, dthydro,
                            time, conf.tstop, cycle)

        for i in IndexLaunch(pieces):
            adv_pos_half(private_part[i], private_spans_part[i], dt, True,
                         False)

        for i in IndexLaunch(pieces):
            adv_pos_half(shared_part[i], shared_spans_part[i], dt, True, False)

        for i in IndexLaunch(pieces):
            calc_everything(zones_part[i], private_part[i], ghost_part[i],
                            sides_part[i], zone_spans_part[i],
                            side_spans_part[i], conf.alfa, conf.gamma,
                            conf.ssmin, dt, conf.q1, conf.q2, True)

        for i in IndexLaunch(pieces):
            adv_pos_full(private_part[i], private_spans_part[i], dt, True)

        for i in IndexLaunch(pieces):
            adv_pos_full(shared_part[i], shared_spans_part[i], dt, True)

        for i in IndexLaunch(pieces):
            calc_everything_full(zones_part[i], private_part[i], ghost_part[i],
                                 sides_part[i], zone_spans_part[i],
                                 side_spans_part[i], dt, True)

        futures = []
        for i in IndexLaunch(pieces):
            futures.append(
                calc_dt_hydro(zones_part[i], zone_spans_part[i], dt,
                              conf.dtmax, conf.cfl, conf.cflv, True, False))

        dthydro = conf.dtmax
        dthydro = min(dthydro, *list(map(lambda x: x.get(), futures)))

        cycle += 1
        time += dt.get()

        if cycle == conf.cstop - conf.prune:
            legion.execution_fence(block=True)
            stop_time = legion.c.legion_get_current_time_in_nanos()

    if old_seq_init:
        validate_output_sequential(zones, points, sides, conf)
    else:
        print_once("Warning: Skipping sequential validation")

    print_once("ELAPSED TIME = %7.3f s" % ((stop_time - start_time) / 1e9))
Beispiel #16
0
def main():
    print_once('Running circuit_sparse.py')

    conf = parse_args(legion.input_args(True))

    assert conf.num_pieces % conf.pieces_per_superpiece == 0, "pieces should be evenly distributed to superpieces"
    conf.shared_nodes_per_piece = int(
        math.ceil(conf.nodes_per_piece * conf.pct_shared_nodes / 100.0))
    print_once(
        "circuit settings: loops=%d prune=%d pieces=%d (pieces/superpiece=%d) nodes/piece=%d (nodes/piece=%d) wires/piece=%d pct_in_piece=%d seed=%d"
        % (conf.num_loops, conf.prune, conf.num_pieces,
           conf.pieces_per_superpiece, conf.nodes_per_piece,
           conf.shared_nodes_per_piece, conf.wires_per_piece,
           conf.pct_wire_in_piece, conf.random_seed))

    num_pieces = conf.num_pieces
    num_superpieces = conf.num_pieces // conf.pieces_per_superpiece
    num_circuit_nodes = num_pieces * conf.nodes_per_piece
    num_circuit_wires = num_pieces * conf.wires_per_piece

    node = Fspace(
        OrderedDict([
            ('node_cap', legion.float32),
            ('leakage', legion.float32),
            ('charge', legion.float32),
            ('node_voltage', legion.float32),
        ]))
    wire = Fspace(
        OrderedDict([
            ('in_ptr', legion.int64),
            ('in_ptr_r', legion.uint8),
            ('out_ptr', legion.int64),
            ('out_ptr_r', legion.uint8),
            ('inductance', legion.float32),
            ('resistance', legion.float32),
            ('wire_cap', legion.float32),
        ] + [('current_%d' % i, legion.float32)
             for i in range(WIRE_SEGMENTS)] +
                    [('voltage_%d' % i, legion.float32)
                     for i in range(WIRE_SEGMENTS - 1)]))

    all_nodes = Region([num_circuit_nodes], node)
    all_wires = Region([num_circuit_wires], wire)

    node_size = np.dtype(list(
        map(lambda x: (x[0], x[1].numpy_type), node.field_types.items())),
                         align=True).itemsize
    wire_size = np.dtype(list(
        map(lambda x: (x[0], x[1].numpy_type), wire.field_types.items())),
                         align=True).itemsize
    print_once("Circuit memory usage:")
    print_once("  Nodes : %10d * %4d bytes = %12d bytes" %
               (num_circuit_nodes, node_size, num_circuit_nodes * node_size))
    print_once("  Wires : %10d * %4d bytes = %12d bytes" %
               (num_circuit_wires, wire_size, num_circuit_wires * wire_size))
    total = ((num_circuit_nodes * node_size) + (num_circuit_wires * wire_size))
    print_once("  Total                             %12d bytes" % total)

    snpp = conf.shared_nodes_per_piece
    pnpp = conf.nodes_per_piece - conf.shared_nodes_per_piece
    pps = conf.pieces_per_superpiece
    num_shared_nodes = num_pieces * snpp

    privacy_coloring = Region([2], {'rect': legion.rect1d})
    np.copyto(privacy_coloring.rect,
              np.array([(num_shared_nodes, num_circuit_nodes - 1),
                        (0, num_shared_nodes - 1)],
                       dtype=privacy_coloring.rect.dtype),
              casting='no')
    privacy_part = Partition.restrict(privacy_coloring, [2], np.eye(1), [1],
                                      disjoint_complete)
    all_nodes_part = Partition.image(all_nodes, privacy_part, 'rect', [2],
                                     disjoint_complete)

    all_private = all_nodes_part[0]
    all_shared = all_nodes_part[1]

    launch_domain = Ispace([num_superpieces])

    private_part = Partition.restrict(all_private, launch_domain,
                                      np.eye(1) * pnpp * pps,
                                      Domain([pnpp * pps], [num_shared_nodes]),
                                      disjoint_complete)
    shared_part = Partition.restrict(all_shared, launch_domain,
                                     np.eye(1) * snpp * pps, [snpp * pps],
                                     disjoint_complete)

    wires_part = Partition.equal(all_wires, launch_domain)

    ghost_ranges = Region([num_superpieces],
                          OrderedDict([('rect', legion.rect1d)]))
    ghost_ranges_part = Partition.equal(ghost_ranges, launch_domain)

    if _constant_time_launches:
        c = Future(conf[0], value_type=Config)
        index_launch(launch_domain, init_piece, ID, c, ghost_ranges_part[ID],
                     private_part[ID], shared_part[ID], all_shared,
                     wires_part[ID])
    else:
        for i in IndexLaunch(launch_domain):
            init_piece(i, conf[0], ghost_ranges_part[i], private_part[i],
                       shared_part[i], all_shared, wires_part[i])

    ghost_part = Partition.image(all_shared, ghost_ranges_part, 'rect',
                                 launch_domain)

    if _constant_time_launches:
        index_launch(launch_domain, init_pointers, private_part[ID],
                     shared_part[ID], ghost_part[ID], wires_part[ID])
    else:
        for i in IndexLaunch(launch_domain):
            init_pointers(private_part[i], shared_part[i], ghost_part[i],
                          wires_part[i])

    steps = conf.steps
    prune = conf.prune
    num_loops = conf.num_loops + 2 * prune

    trace = Trace()
    for j in range(num_loops):
        if j == prune:
            legion.execution_fence(block=True)
            start_time = legion.c.legion_get_current_time_in_nanos()
        with trace:
            if _constant_time_launches:
                index_launch(launch_domain, calculate_new_currents, False,
                             steps, private_part[ID], shared_part[ID],
                             ghost_part[ID], wires_part[ID])
                index_launch(launch_domain, distribute_charge,
                             private_part[ID], shared_part[ID], ghost_part[ID],
                             wires_part[ID])
                index_launch(launch_domain, update_voltages, False,
                             private_part[ID], shared_part[ID])
            else:
                for i in IndexLaunch(launch_domain):
                    calculate_new_currents(False, steps, private_part[i],
                                           shared_part[i], ghost_part[i],
                                           wires_part[i])
                for i in IndexLaunch(launch_domain):
                    distribute_charge(private_part[i], shared_part[i],
                                      ghost_part[i], wires_part[i])
                for i in IndexLaunch(launch_domain):
                    update_voltages(False, private_part[i], shared_part[i])
        if j == num_loops - prune - 1:
            legion.execution_fence(block=True)
            stop_time = legion.c.legion_get_current_time_in_nanos()

    sim_time = (stop_time - start_time) / 1e9
    print_once('ELAPSED TIME = %7.3f s' % sim_time)

    # Compute the floating point operations per second
    num_circuit_nodes = conf.num_pieces * conf.nodes_per_piece
    num_circuit_wires = conf.num_pieces * conf.wires_per_piece
    # calculate currents
    operations = num_circuit_wires * (WIRE_SEGMENTS * 6 +
                                      (WIRE_SEGMENTS - 1) * 4) * conf.steps
    # distribute charge
    operations += (num_circuit_wires * 4)
    # update voltages
    operations += (num_circuit_nodes * 4)
    # multiply by the number of loops
    operations *= conf.num_loops

    # Compute the number of gflops
    gflops = (1e-9 * operations) / sim_time
    print_once("GFLOPS = %7.3f GFLOPS" % gflops)
Beispiel #17
0
def create_partition(is_disjoint, region, c_partition, color_space):
    ipart = Ipartition(c_partition.index_partition, region.ispace, color_space)
    return Partition(region, ipart)