Beispiel #1
0
    def test_spemd(self):
        from lenstronomy.LensModel.Profiles.spep import SPEP
        from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
        spep = SPEP()
        mge_kappa = MultiGaussianKappa()
        n_comp = 8
        theta_E = 1.41
        kwargs = {'theta_E': theta_E, 'e1': 0, 'e2': 0, 'gamma': 1.61}
        rs = np.logspace(-2., 1., 100) * theta_E
        f_xx, f_yy, f_xy = spep.hessian(rs, 0, **kwargs)
        kappa = 1 / 2. * (f_xx + f_yy)
        amplitudes, sigmas, norm = mge.mge_1d(rs, kappa, N=n_comp)
        kappa_mge = self.multiGaussian.function(rs,
                                                np.zeros_like(rs),
                                                amp=amplitudes,
                                                sigma=sigmas)
        f_xx_mge, f_yy_mge, f_xy_mge = mge_kappa.hessian(rs,
                                                         np.zeros_like(rs),
                                                         amp=amplitudes,
                                                         sigma=sigmas)
        for i in range(0, 80):
            npt.assert_almost_equal(kappa_mge[i],
                                    1. / 2 * (f_xx_mge[i] + f_yy_mge[i]),
                                    decimal=1)
            npt.assert_almost_equal((kappa[i] - kappa_mge[i]) / kappa[i],
                                    0,
                                    decimal=1)

        f_ = spep.function(theta_E, 0, **kwargs)
        f_mge = mge_kappa.function(theta_E, 0, sigma=sigmas, amp=amplitudes)
        npt.assert_almost_equal(f_mge / f_, 1, decimal=2)
Beispiel #2
0
 def test_density_lens(self):
     r = 1
     kwargs = {'theta_E': 1, 'gamma': 2, 'e1': 0, 'e2': 0}
     rho = self.EPL.density_lens(r, **kwargs)
     from lenstronomy.LensModel.Profiles.spep import SPEP
     spep = SPEP()
     rho_spep = spep.density_lens(r, **kwargs)
     npt.assert_almost_equal(rho, rho_spep, decimal=7)
Beispiel #3
0
class TestSPEMD(object):
    """
    tests the Gaussian methods
    """
    def setup(self):
        from lenstronomy.LensModel.Profiles.pemd import PEMD
        from lenstronomy.LensModel.Profiles.spep import SPEP
        self.PEMD = PEMD(suppress_fastell=True)
        self.SPEP = SPEP()

    def test_function(self):
        phi_E = 1.
        gamma = 1.9
        q = 0.9
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        x = np.array([1.])
        y = np.array([2])
        a = np.zeros_like(x)
        values = self.PEMD.function(x, y, phi_E, gamma, e1, e2)
        if fastell4py_bool:
            npt.assert_almost_equal(values[0], 2.1571106351401803, decimal=5)
        else:
            assert values == 0
        a += values
        x = np.array(1.)
        y = np.array(2.)
        a = np.zeros_like(x)
        values = self.PEMD.function(x, y, phi_E, gamma, e1, e2)
        print(x, values)
        a += values
        if fastell4py_bool:
            npt.assert_almost_equal(values, 2.1571106351401803, decimal=5)
        else:
            assert values == 0
        assert type(x) == type(values)

        x = np.array([2, 3, 4])
        y = np.array([1, 1, 1])
        values = self.PEMD.function(x, y, phi_E, gamma, e1, e2)
        if fastell4py_bool:
            npt.assert_almost_equal(values[0], 2.180188584782964, decimal=7)
            npt.assert_almost_equal(values[1], 3.2097137160951874, decimal=7)
            npt.assert_almost_equal(values[2], 4.3109976673748, decimal=7)
        else:
            npt.assert_almost_equal(values[0], 0, decimal=7)
            npt.assert_almost_equal(values[1], 0, decimal=7)
            npt.assert_almost_equal(values[2], 0, decimal=7)

    def test_derivatives(self):
        x = np.array([1])
        y = np.array([2])
        phi_E = 1.
        gamma = 1.9
        q = 0.9
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_x, f_y = self.PEMD.derivatives(x, y, phi_E, gamma, e1, e2)
        if fastell4py_bool:
            npt.assert_almost_equal(f_x[0], 0.46664118422711387, decimal=7)
            npt.assert_almost_equal(f_y[0], 0.9530892465981603, decimal=7)
        else:
            npt.assert_almost_equal(f_x[0], 0, decimal=7)
            npt.assert_almost_equal(f_y[0], 0, decimal=7)

        x = np.array([1., 3, 4])
        y = np.array([2., 1, 1])
        a = np.zeros_like(x)
        values = self.PEMD.derivatives(x, y, phi_E, gamma, e1, e2)
        if fastell4py_bool:
            npt.assert_almost_equal(values[0][0],
                                    0.46664118422711387,
                                    decimal=7)
            npt.assert_almost_equal(values[1][0],
                                    0.9530892465981603,
                                    decimal=7)
            npt.assert_almost_equal(values[0][1],
                                    1.0722265330847958,
                                    decimal=7)
            npt.assert_almost_equal(values[1][1],
                                    0.3140067377020791,
                                    decimal=7)
        else:
            npt.assert_almost_equal(values[0][0], 0, decimal=7)
            npt.assert_almost_equal(values[1][0], 0, decimal=7)
            npt.assert_almost_equal(values[0][1], 0, decimal=7)
            npt.assert_almost_equal(values[1][1], 0, decimal=7)
        a += values[0]
        x = 1.
        y = 2.
        phi_E = 1.
        gamma = 1.9
        q = 0.9
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_x, f_y = self.PEMD.derivatives(x, y, phi_E, gamma, e1, e2)
        if fastell4py_bool:
            npt.assert_almost_equal(f_x, 0.46664118422711387, decimal=7)
            npt.assert_almost_equal(f_y, 0.9530892465981603, decimal=7)
        else:
            npt.assert_almost_equal(f_x, 0, decimal=7)
            npt.assert_almost_equal(f_y, 0, decimal=7)
        x = 0.
        y = 0.
        f_x, f_y = self.PEMD.derivatives(x, y, phi_E, gamma, e1, e2)
        assert f_x == 0.
        assert f_y == 0.

    def test_hessian(self):
        x = np.array([1])
        y = np.array([2])
        phi_E = 1.
        gamma = 1.9
        q = 0.9
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_xx, f_xy, f_yx, f_yy = self.PEMD.hessian(x, y, phi_E, gamma, e1, e2)
        if fastell4py_bool:
            npt.assert_almost_equal(f_xx, 0.4179041, decimal=7)
            npt.assert_almost_equal(f_yy, 0.1404714, decimal=7)
            npt.assert_almost_equal(f_xy, -0.1856134, decimal=7)
        else:
            npt.assert_almost_equal(f_xx, 0, decimal=7)
            npt.assert_almost_equal(f_yy, 0, decimal=7)
            npt.assert_almost_equal(f_xy, 0, decimal=7)
        npt.assert_almost_equal(f_xy, f_yx, decimal=8)

        x = 1.
        y = 2.
        phi_E = 1.
        gamma = 1.9
        q = 0.9
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        a = np.zeros_like(x)
        f_xx, f_xy, f_yx, f_yy = self.PEMD.hessian(x, y, phi_E, gamma, e1, e2)
        if fastell4py_bool:
            npt.assert_almost_equal(f_xx, 0.41790408341142493, decimal=7)
            npt.assert_almost_equal(f_yy, 0.14047143086334482, decimal=7)
            npt.assert_almost_equal(f_xy, -0.1856133848300859, decimal=7)
        else:
            npt.assert_almost_equal(f_xx, 0, decimal=7)
            npt.assert_almost_equal(f_yy, 0, decimal=7)
            npt.assert_almost_equal(f_xy, 0, decimal=7)
        a += f_xx
        x = np.array([1, 3, 4])
        y = np.array([2, 1, 1])
        values = self.PEMD.hessian(x, y, phi_E, gamma, e1, e2)
        print(values, 'values')
        if fastell4py_bool:
            npt.assert_almost_equal(values[0][0],
                                    0.41789957732890953,
                                    decimal=5)
            npt.assert_almost_equal(values[3][0],
                                    0.14047593655054141,
                                    decimal=5)
            npt.assert_almost_equal(values[1][0],
                                    -0.18560737698052343,
                                    decimal=5)
            npt.assert_almost_equal(values[0][1],
                                    0.068359818958208918,
                                    decimal=5)
            npt.assert_almost_equal(values[3][1],
                                    0.32494089371516482,
                                    decimal=5)
            npt.assert_almost_equal(values[1][1],
                                    -0.097845438684594374,
                                    decimal=5)
        else:
            npt.assert_almost_equal(values[0][0], 0, decimal=7)

    def test_spep_spemd(self):
        x = np.array([1])
        y = np.array([0])
        phi_E = 1.
        gamma = 2.
        q = 1.
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_x, f_y = self.PEMD.derivatives(x, y, phi_E, gamma, e1, e2)
        f_x_spep, f_y_spep = self.SPEP.derivatives(x, y, phi_E, gamma, e1, e2)
        if fastell4py_bool:
            npt.assert_almost_equal(f_x[0], f_x_spep[0], decimal=2)
        else:
            pass

        theta_E = 2.
        gamma = 2.
        q = 1.
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_x, f_y = self.PEMD.derivatives(x, y, theta_E, gamma, e1, e2)
        f_x_spep, f_y_spep = self.SPEP.derivatives(x, y, theta_E, gamma, e1,
                                                   e2)
        if fastell4py_bool:
            npt.assert_almost_equal(f_x[0], f_x_spep[0], decimal=2)
        else:
            pass

        theta_E = 2.
        gamma = 1.7
        q = 1.
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_x, f_y = self.PEMD.derivatives(x, y, theta_E, gamma, e1, e2)
        f_x_spep, f_y_spep = self.SPEP.derivatives(x, y, theta_E, gamma, e1,
                                                   e2)
        if fastell4py_bool:
            npt.assert_almost_equal(f_x[0], f_x_spep[0], decimal=4)

    def test_bounds(self):
        from lenstronomy.LensModel.Profiles.spemd import SPEMD
        profile = SPEMD(suppress_fastell=True)
        compute_bool = profile._parameter_constraints(q_fastell=-1,
                                                      gam=-1,
                                                      s2=-1,
                                                      q=-1)
        assert compute_bool is False

    def test_is_not_empty(self):
        func = self.PEMD.spemd_smooth.is_not_empty

        assert func(0.1, 0.2)
        assert func([0.1], [0.2])
        assert func((0.1, 0.3), (0.2, 0.4))
        assert func(np.array([0.1]), np.array([0.2]))
        assert not func([], [])
        assert not func(np.array([]), np.array([]))

    def test_density_lens(self):
        r = 1
        kwargs = {'theta_E': 1, 'gamma': 2, 'e1': 0, 'e2': 0}
        rho = self.PEMD.density_lens(r, **kwargs)
        rho_spep = self.SPEP.density_lens(r, **kwargs)
        npt.assert_almost_equal(rho, rho_spep, decimal=7)
Beispiel #4
0
    def __init__(self, lens_model_list, **kwargs):
        """

        :param lens_model_list: list of strings with lens model names
        :param foreground_shear: bool, when True, models a foreground non-linear shear distortion
        """
        self.func_list = []
        self._foreground_shear = False
        for i, lens_type in enumerate(lens_model_list):
            if lens_type == 'SHEAR':
                from lenstronomy.LensModel.Profiles.external_shear import ExternalShear
                self.func_list.append(ExternalShear())
            elif lens_type == 'CONVERGENCE':
                from lenstronomy.LensModel.Profiles.mass_sheet import MassSheet
                self.func_list.append(MassSheet())
            elif lens_type == 'FLEXION':
                from lenstronomy.LensModel.Profiles.flexion import Flexion
                self.func_list.append(Flexion())
            elif lens_type == 'POINT_MASS':
                from lenstronomy.LensModel.Profiles.point_mass import PointMass
                self.func_list.append(PointMass())
            elif lens_type == 'SIS':
                from lenstronomy.LensModel.Profiles.sis import SIS
                self.func_list.append(SIS())
            elif lens_type == 'SIS_TRUNCATED':
                from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate
                self.func_list.append(SIS_truncate())
            elif lens_type == 'SIE':
                from lenstronomy.LensModel.Profiles.sie import SIE
                self.func_list.append(SIE())
            elif lens_type == 'SPP':
                from lenstronomy.LensModel.Profiles.spp import SPP
                self.func_list.append(SPP())
            elif lens_type == 'NIE':
                from lenstronomy.LensModel.Profiles.nie import NIE
                self.func_list.append(NIE())
            elif lens_type == 'NIE_SIMPLE':
                from lenstronomy.LensModel.Profiles.nie import NIE_simple
                self.func_list.append(NIE_simple())
            elif lens_type == 'CHAMELEON':
                from lenstronomy.LensModel.Profiles.chameleon import Chameleon
                self.func_list.append(Chameleon())
            elif lens_type == 'DOUBLE_CHAMELEON':
                from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon
                self.func_list.append(DoubleChameleon())
            elif lens_type == 'SPEP':
                from lenstronomy.LensModel.Profiles.spep import SPEP
                self.func_list.append(SPEP())
            elif lens_type == 'SPEMD':
                from lenstronomy.LensModel.Profiles.spemd import SPEMD
                self.func_list.append(SPEMD())
            elif lens_type == 'SPEMD_SMOOTH':
                from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
                self.func_list.append(SPEMD_SMOOTH())
            elif lens_type == 'NFW':
                from lenstronomy.LensModel.Profiles.nfw import NFW
                self.func_list.append(NFW(**kwargs))
            elif lens_type == 'NFW_ELLIPSE':
                from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE
                self.func_list.append(
                    NFW_ELLIPSE(interpol=False,
                                num_interp_X=1000,
                                max_interp_X=100))
            elif lens_type == 'TNFW':
                from lenstronomy.LensModel.Profiles.tnfw import TNFW
                self.func_list.append(TNFW())
            elif lens_type == 'SERSIC':
                from lenstronomy.LensModel.Profiles.sersic import Sersic
                self.func_list.append(Sersic())
            elif lens_type == 'SERSIC_ELLIPSE':
                from lenstronomy.LensModel.Profiles.sersic_ellipse import SersicEllipse
                self.func_list.append(SersicEllipse())
            elif lens_type == 'PJAFFE':
                from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
                self.func_list.append(PJaffe())
            elif lens_type == 'PJAFFE_ELLIPSE':
                from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse
                self.func_list.append(PJaffe_Ellipse())
            elif lens_type == 'HERNQUIST':
                from lenstronomy.LensModel.Profiles.hernquist import Hernquist
                self.func_list.append(Hernquist())
            elif lens_type == 'HERNQUIST_ELLIPSE':
                from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse
                self.func_list.append(Hernquist_Ellipse())
            elif lens_type == 'GAUSSIAN':
                from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
                self.func_list.append(Gaussian())
            elif lens_type == 'GAUSSIAN_KAPPA':
                from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa
                self.func_list.append(GaussianKappa())
            elif lens_type == 'GAUSSIAN_KAPPA_ELLIPSE':
                from lenstronomy.LensModel.Profiles.gaussian_kappa_ellipse import GaussianKappaEllipse
                self.func_list.append(GaussianKappaEllipse())
            elif lens_type == 'MULTI_GAUSSIAN_KAPPA':
                from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
                self.func_list.append(MultiGaussianKappa())
            elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE':
                from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse
                self.func_list.append(MultiGaussianKappaEllipse())
            elif lens_type == 'INTERPOL':
                from lenstronomy.LensModel.Profiles.interpol import Interpol_func
                self.func_list.append(
                    Interpol_func(grid=False, min_grid_number=100))
            elif lens_type == 'INTERPOL_SCALED':
                from lenstronomy.LensModel.Profiles.interpol import Interpol_func_scaled
                self.func_list.append(
                    Interpol_func_scaled(grid=False, min_grid_number=100))
            elif lens_type == 'SHAPELETS_POLAR':
                from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets
                self.func_list.append(PolarShapelets())
            elif lens_type == 'SHAPELETS_CART':
                from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets
                self.func_list.append(CartShapelets())
            elif lens_type == 'DIPOLE':
                from lenstronomy.LensModel.Profiles.dipole import Dipole
                self.func_list.append(Dipole())
            elif lens_type == 'FOREGROUND_SHEAR':
                from lenstronomy.LensModel.Profiles.external_shear import ExternalShear
                self.func_list.append(ExternalShear())
                self._foreground_shear = True
                self._foreground_shear_idex = i
            else:
                raise ValueError('%s is not a valid lens model' % lens_type)

        self._model_list = lens_model_list
    def setup(self):

        self.nie_potential = NIE_POTENTIAL()
        self.spep = SPEP()
class TestNIE_POTENTIAL(object):
    """
    tests the NIE_POTENTIAL profile for different rotations
    """
    def setup(self):

        self.nie_potential = NIE_POTENTIAL()
        self.spep = SPEP()

    def test_function(self):
        y = np.array([1., 2])
        x = np.array([0., 0.])

        theta_E = 1.
        theta_c = 0.

        #############
        # no rotation
        #############

        e1, e2 = 0.05, 0.0
        eps = np.sqrt(e1**2 + e2**2)
        phi_G, q = param_util.ellipticity2phi_q(e1, e2)

        # map the nie_potential input to the spep input
        gamma_spep = 2.
        q_spep = np.sqrt(q)
        e1_spep, e2_spep = param_util.phi_q2_ellipticity(phi_G, q_spep)
        theta_E_conv = self.nie_potential._theta_q_convert(theta_E, q)
        theta_E_spep = theta_E_conv * np.sqrt(1 - eps) / ((1 - eps) /
                                                          (1 + eps))**0.25

        # compare the non-rotated output
        values = self.nie_potential.function(x, y, theta_E, theta_c, e1, e2)
        delta_pot = values[1] - values[0]
        values = self.spep.function(x, y, theta_E_spep, gamma_spep, e1_spep,
                                    e2_spep)
        delta_pot_spep = values[1] - values[0]
        npt.assert_almost_equal(delta_pot, delta_pot_spep, decimal=4)

        ############
        # rotation 1
        ############

        e1, e2 = 0.05, 0.1
        eps = np.sqrt(e1**2 + e2**2)
        phi_G, q = param_util.ellipticity2phi_q(e1, e2)

        # map the nie_potential input to the spep input
        gamma_spep = 2.
        q_spep = np.sqrt(q)
        e1_spep, e2_spep = param_util.phi_q2_ellipticity(phi_G, q_spep)
        theta_E_conv = self.nie_potential._theta_q_convert(theta_E, q)
        theta_E_spep = theta_E_conv * np.sqrt(1 - eps) / ((1 - eps) /
                                                          (1 + eps))**0.25

        # compare the rotated output
        values = self.nie_potential.function(x, y, theta_E, theta_c, e1, e2)
        delta_pot = values[1] - values[0]
        values = self.spep.function(x, y, theta_E_spep, gamma_spep, e1_spep,
                                    e2_spep)
        delta_pot_spep = values[1] - values[0]
        npt.assert_almost_equal(delta_pot, delta_pot_spep, decimal=4)

        ############
        # rotation 2
        ############

        e1, e2 = 0.15, 0.13
        eps = np.sqrt(e1**2 + e2**2)
        phi_G, q = param_util.ellipticity2phi_q(e1, e2)

        # map the nie_potential input to the spep input
        gamma_spep = 2.
        q_spep = np.sqrt(q)
        e1_spep, e2_spep = param_util.phi_q2_ellipticity(phi_G, q_spep)
        theta_E_conv = self.nie_potential._theta_q_convert(theta_E, q)
        theta_E_spep = theta_E_conv * np.sqrt(1 - eps) / ((1 - eps) /
                                                          (1 + eps))**0.25

        # compare the rotated output
        values = self.nie_potential.function(x, y, theta_E, theta_c, e1, e2)
        delta_pot = values[1] - values[0]
        values = self.spep.function(x, y, theta_E_spep, gamma_spep, e1_spep,
                                    e2_spep)
        delta_pot_spep = values[1] - values[0]
        npt.assert_almost_equal(delta_pot, delta_pot_spep, decimal=4)

    def test_derivatives(self):
        x = np.array([1])
        y = np.array([2])

        theta_E = 1.
        theta_c = 0.

        #############
        # no rotation
        #############

        e1, e2 = 0.05, 0.0
        eps = np.sqrt(e1**2 + e2**2)
        phi_G, q = param_util.ellipticity2phi_q(e1, e2)

        # map the nie_potential input to the spep input
        gamma_spep = 2.
        q_spep = np.sqrt(q)
        e1_spep, e2_spep = param_util.phi_q2_ellipticity(phi_G, q_spep)
        theta_E_conv = self.nie_potential._theta_q_convert(theta_E, q)
        theta_E_spep = theta_E_conv * np.sqrt(1 - eps) / ((1 - eps) /
                                                          (1 + eps))**0.25

        # compare the non-rotated output
        f_x, f_y = self.nie_potential.derivatives(x, y, theta_E, theta_c, e1,
                                                  e2)
        f_x_nie, f_y_nie = self.spep.derivatives(x, y, theta_E_spep,
                                                 gamma_spep, e1_spep, e2_spep)
        npt.assert_almost_equal(f_x, f_x_nie, decimal=4)
        npt.assert_almost_equal(f_y, f_y_nie, decimal=4)

        ############
        # rotation 1
        ############

        e1, e2 = 0.05, 0.1
        eps = np.sqrt(e1**2 + e2**2)
        phi_G, q = param_util.ellipticity2phi_q(e1, e2)

        # map the nie_potential input to the spep input
        gamma_spep = 2.
        q_spep = np.sqrt(q)
        e1_spep, e2_spep = param_util.phi_q2_ellipticity(phi_G, q_spep)
        theta_E_conv = self.nie_potential._theta_q_convert(theta_E, q)
        theta_E_spep = theta_E_conv * np.sqrt(1 - eps) / ((1 - eps) /
                                                          (1 + eps))**0.25

        # compare the rotated output
        f_x, f_y = self.nie_potential.derivatives(x, y, theta_E, theta_c, e1,
                                                  e2)
        f_x_nie, f_y_nie = self.spep.derivatives(x, y, theta_E_spep,
                                                 gamma_spep, e1_spep, e2_spep)
        npt.assert_almost_equal(f_x, f_x_nie, decimal=4)
        npt.assert_almost_equal(f_y, f_y_nie, decimal=4)

        ############
        # rotation 2
        ############

        e1, e2 = 0.15, 0.13
        eps = np.sqrt(e1**2 + e2**2)
        phi_G, q = param_util.ellipticity2phi_q(e1, e2)

        # map the nie_potential input to the spep input
        gamma_spep = 2.
        q_spep = np.sqrt(q)
        e1_spep, e2_spep = param_util.phi_q2_ellipticity(phi_G, q_spep)
        theta_E_conv = self.nie_potential._theta_q_convert(theta_E, q)
        theta_E_spep = theta_E_conv * np.sqrt(1 - eps) / ((1 - eps) /
                                                          (1 + eps))**0.25

        # compare the rotated output
        f_x, f_y = self.nie_potential.derivatives(x, y, theta_E, theta_c, e1,
                                                  e2)
        f_x_nie, f_y_nie = self.spep.derivatives(x, y, theta_E_spep,
                                                 gamma_spep, e1_spep, e2_spep)
        npt.assert_almost_equal(f_x, f_x_nie, decimal=4)
        npt.assert_almost_equal(f_y, f_y_nie, decimal=4)

    def test_hessian(self):
        x = np.array([1])
        y = np.array([2])

        theta_E = 1.
        theta_c = 0.

        #############
        # no rotation
        #############

        e1, e2 = 0.05, 0.0
        eps = np.sqrt(e1**2 + e2**2)
        phi_G, q = param_util.ellipticity2phi_q(e1, e2)

        # map the nie_potential input to the spep input
        gamma_spep = 2.
        q_spep = np.sqrt(q)
        e1_spep, e2_spep = param_util.phi_q2_ellipticity(phi_G, q_spep)
        theta_E_conv = self.nie_potential._theta_q_convert(theta_E, q)
        theta_E_spep = theta_E_conv * np.sqrt(1 - eps) / ((1 - eps) /
                                                          (1 + eps))**0.25

        # compare the non-rotated output
        f_xx, f_xy, f_yx, f_yy = self.nie_potential.hessian(
            x, y, theta_E, theta_c, e1, e2)
        f_xx_nie, f_xy_nie, f_yx_nie, f_yy_nie = self.spep.hessian(
            x, y, theta_E_spep, gamma_spep, e1_spep, e2_spep)
        npt.assert_almost_equal(f_xx, f_xx_nie, decimal=4)
        npt.assert_almost_equal(f_yy, f_yy_nie, decimal=4)
        npt.assert_almost_equal(f_xy, f_xy_nie, decimal=4)
        npt.assert_almost_equal(f_yx, f_yx_nie, decimal=4)

        ############
        # rotation 1
        ############

        e1, e2 = 0.05, 0.1
        eps = np.sqrt(e1**2 + e2**2)
        phi_G, q = param_util.ellipticity2phi_q(e1, e2)

        # map the nie_potential input to the spep input
        gamma_spep = 2.
        q_spep = np.sqrt(q)
        e1_spep, e2_spep = param_util.phi_q2_ellipticity(phi_G, q_spep)
        theta_E_conv = self.nie_potential._theta_q_convert(theta_E, q)
        theta_E_spep = theta_E_conv * np.sqrt(1 - eps) / ((1 - eps) /
                                                          (1 + eps))**0.25

        # compare the rotated output
        f_xx, f_xy, f_yx, f_yy = self.nie_potential.hessian(
            x, y, theta_E, theta_c, e1, e2)
        f_xx_nie, f_xy_nie, f_yx_nie, f_yy_nie = self.spep.hessian(
            x, y, theta_E_spep, gamma_spep, e1_spep, e2_spep)
        npt.assert_almost_equal(f_xx, f_xx_nie, decimal=4)
        npt.assert_almost_equal(f_yy, f_yy_nie, decimal=4)
        npt.assert_almost_equal(f_xy, f_xy_nie, decimal=4)
        npt.assert_almost_equal(f_yx, f_yx_nie, decimal=4)

        ############
        # rotation 2
        ############

        e1, e2 = 0.15, 0.13
        eps = np.sqrt(e1**2 + e2**2)
        phi_G, q = param_util.ellipticity2phi_q(e1, e2)

        # map the nie_potential input to the spep input
        gamma_spep = 2.
        q_spep = np.sqrt(q)
        e1_spep, e2_spep = param_util.phi_q2_ellipticity(phi_G, q_spep)
        theta_E_conv = self.nie_potential._theta_q_convert(theta_E, q)
        theta_E_spep = theta_E_conv * np.sqrt(1 - eps) / ((1 - eps) /
                                                          (1 + eps))**0.25

        # compare the rotated output
        f_xx, f_xy, f_yx, f_yy = self.nie_potential.hessian(
            x, y, theta_E, theta_c, e1, e2)
        f_xx_nie, f_xy_nie, f_yx_nie, f_yy_nie = self.spep.hessian(
            x, y, theta_E_spep, gamma_spep, e1_spep, e2_spep)
        npt.assert_almost_equal(f_xx, f_xx_nie, decimal=4)
        npt.assert_almost_equal(f_yy, f_yy_nie, decimal=4)
        npt.assert_almost_equal(f_xy, f_xy_nie, decimal=4)
        npt.assert_almost_equal(f_yx, f_yx_nie, decimal=4)

    def test_static(self):
        x, y = 1., 1.
        phi_G, q = 0.3, 0.8

        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        kwargs_lens = {'theta_E': 1., 'theta_c': .1, 'e1': e1, 'e2': e2}
        f_ = self.nie_potential.function(x, y, **kwargs_lens)
        self.nie_potential.set_static(**kwargs_lens)
        f_static = self.nie_potential.function(x, y, **kwargs_lens)
        npt.assert_almost_equal(f_, f_static, decimal=8)
        self.nie_potential.set_dynamic()
        kwargs_lens = {'theta_E': 2., 'theta_c': .1, 'e1': e1, 'e2': e2}
        f_dyn = self.nie_potential.function(x, y, **kwargs_lens)
        assert f_dyn != f_static
Beispiel #7
0
 def setup(self):
     self.SPEP = SPEP()
     self.SIE = SIE()
Beispiel #8
0
 def setup(self):
     self.SPEP = SPEP()
    def _import_class(self, lens_type, i, custom_class):

        if lens_type == 'SHIFT':
            from lenstronomy.LensModel.Profiles.alpha_shift import Shift
            return Shift()
        elif lens_type == 'SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            return Shear()
        elif lens_type == 'CONVERGENCE':
            from lenstronomy.LensModel.Profiles.convergence import Convergence
            return Convergence()
        elif lens_type == 'FLEXION':
            from lenstronomy.LensModel.Profiles.flexion import Flexion
            return Flexion()
        elif lens_type == 'POINT_MASS':
            from lenstronomy.LensModel.Profiles.point_mass import PointMass
            return PointMass()
        elif lens_type == 'SIS':
            from lenstronomy.LensModel.Profiles.sis import SIS
            return SIS()
        elif lens_type == 'SIS_TRUNCATED':
            from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate
            return SIS_truncate()
        elif lens_type == 'SIE':
            from lenstronomy.LensModel.Profiles.sie import SIE
            return SIE()
        elif lens_type == 'SPP':
            from lenstronomy.LensModel.Profiles.spp import SPP
            return SPP()
        elif lens_type == 'NIE':
            from lenstronomy.LensModel.Profiles.nie import NIE
            return NIE()
        elif lens_type == 'NIE_SIMPLE':
            from lenstronomy.LensModel.Profiles.nie import NIE_simple
            return NIE_simple()
        elif lens_type == 'CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import Chameleon
            return Chameleon()
        elif lens_type == 'DOUBLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon
            return DoubleChameleon()
        elif lens_type == 'SPEP':
            from lenstronomy.LensModel.Profiles.spep import SPEP
            return SPEP()
        elif lens_type == 'SPEMD':
            from lenstronomy.LensModel.Profiles.spemd import SPEMD
            return SPEMD()
        elif lens_type == 'SPEMD_SMOOTH':
            from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
            return SPEMD_SMOOTH()
        elif lens_type == 'NFW':
            from lenstronomy.LensModel.Profiles.nfw import NFW
            return NFW()
        elif lens_type == 'NFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE
            return NFW_ELLIPSE()
        elif lens_type == 'TNFW':
            from lenstronomy.LensModel.Profiles.tnfw import TNFW
            return TNFW()
        elif lens_type == 'CNFW':
            from lenstronomy.LensModel.Profiles.cnfw import CNFW
            return CNFW()
        elif lens_type == 'SERSIC':
            from lenstronomy.LensModel.Profiles.sersic import Sersic
            return Sersic()
        elif lens_type == 'SERSIC_ELLIPSE':
            from lenstronomy.LensModel.Profiles.sersic_ellipse import SersicEllipse
            return SersicEllipse()
        elif lens_type == 'PJAFFE':
            from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
            return PJaffe()
        elif lens_type == 'PJAFFE_ELLIPSE':
            from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse
            return PJaffe_Ellipse()
        elif lens_type == 'HERNQUIST':
            from lenstronomy.LensModel.Profiles.hernquist import Hernquist
            return Hernquist()
        elif lens_type == 'HERNQUIST_ELLIPSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse
            return Hernquist_Ellipse()
        elif lens_type == 'GAUSSIAN':
            from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
            return Gaussian()
        elif lens_type == 'GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa
            return GaussianKappa()
        elif lens_type == 'GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.gaussian_kappa_ellipse import GaussianKappaEllipse
            return GaussianKappaEllipse()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
            return MultiGaussianKappa()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse
            return MultiGaussianKappaEllipse()
        elif lens_type == 'INTERPOL':
            from lenstronomy.LensModel.Profiles.interpol import Interpol
            return Interpol(grid=False, min_grid_number=100)
        elif lens_type == 'INTERPOL_SCALED':
            from lenstronomy.LensModel.Profiles.interpol import InterpolScaled
            return InterpolScaled()
        elif lens_type == 'SHAPELETS_POLAR':
            from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets
            return PolarShapelets()
        elif lens_type == 'SHAPELETS_CART':
            from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets
            return CartShapelets()
        elif lens_type == 'DIPOLE':
            from lenstronomy.LensModel.Profiles.dipole import Dipole
            return Dipole()
        elif lens_type == 'FOREGROUND_SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            self._foreground_shear = True
            self._foreground_shear_idex = i
            return Shear()
        elif lens_type == 'coreBURKERT':
            from lenstronomy.LensModel.Profiles.coreBurkert import coreBurkert
            return coreBurkert()
        elif lens_type == 'NumericalAlpha':
            from lenstronomy.LensModel.Profiles.numerical_deflections import NumericalAlpha
            return NumericalAlpha(custom_class[i])
        else:
            raise ValueError('%s is not a valid lens model' % lens_type)
Beispiel #10
0
class TestSPEP(object):
    """
    tests the Gaussian methods
    """
    def setup(self):
        self.SPEP = SPEP()
        self.SPP = SPP()
        self.SIS = SIS()

    def test_function(self):
        x = np.array([1])
        y = np.array([2])
        phi_E = 1.
        gamma = 1.9
        q = 1
        phi_G = 0.
        E = phi_E / (((3 - gamma) / 2.)**(1. / (1 - gamma)) * np.sqrt(q))
        values_spep = self.SPEP.function(x, y, E, gamma, q, phi_G)
        values_spp = self.SPP.function(x, y, E, gamma)
        assert values_spep[0] == values_spp[0]
        x = np.array([0])
        y = np.array([0])
        values_spep = self.SPEP.function(x, y, E, gamma, q, phi_G)
        values_spp = self.SPP.function(x, y, E, gamma)
        assert values_spep[0] == values_spp[0]

        x = np.array([2, 3, 4])
        y = np.array([1, 1, 1])
        values_spep = self.SPEP.function(x, y, E, gamma, q, phi_G)
        values_spp = self.SPP.function(x, y, E, gamma)
        assert values_spep[0] == values_spp[0]
        assert values_spep[1] == values_spp[1]
        assert values_spep[2] == values_spp[2]

    def test_derivatives(self):
        x = np.array([1])
        y = np.array([2])
        phi_E = 1.
        gamma = 1.9
        q = 1
        phi_G = 0.
        E = phi_E / (((3 - gamma) / 2.)**(1. / (1 - gamma)) * np.sqrt(q))
        f_x_spep, f_y_spep = self.SPEP.derivatives(x, y, E, gamma, q, phi_G)
        f_x_spp, f_y_spp = self.SPP.derivatives(x, y, E, gamma)
        assert f_x_spep[0] == f_x_spp[0]
        assert f_y_spep[0] == f_y_spp[0]
        x = np.array([0])
        y = np.array([0])
        f_x_spep, f_y_spep = self.SPEP.derivatives(x, y, E, gamma, q, phi_G)
        f_x_spp, f_y_spp = self.SPP.derivatives(x, y, E, gamma)
        assert f_x_spep[0] == f_x_spp[0]
        assert f_y_spep[0] == f_y_spp[0]

        x = np.array([1, 3, 4])
        y = np.array([2, 1, 1])
        f_x_spep, f_y_spep = self.SPEP.derivatives(x, y, E, gamma, q, phi_G)
        f_x_spp, f_y_spp = self.SPP.derivatives(x, y, E, gamma)
        assert f_x_spep[0] == f_x_spp[0]
        assert f_y_spep[0] == f_y_spp[0]
        assert f_x_spep[1] == f_x_spp[1]
        assert f_y_spep[1] == f_y_spp[1]
        assert f_x_spep[2] == f_x_spp[2]
        assert f_y_spep[2] == f_y_spp[2]

    def test_hessian(self):
        x = np.array([1])
        y = np.array([2])
        phi_E = 1.
        gamma = 1.9
        q = 1.
        phi_G = 0.
        E = phi_E / (((3 - gamma) / 2.)**(1. / (1 - gamma)) * np.sqrt(q))
        f_xx, f_yy, f_xy = self.SPEP.hessian(x, y, E, gamma, q, phi_G)
        f_xx_spep, f_yy_spep, f_xy_spep = self.SPEP.hessian(
            x, y, E, gamma, q, phi_G)
        f_xx_spp, f_yy_spp, f_xy_spp = self.SPP.hessian(x, y, E, gamma)
        assert f_xx_spep[0] == f_xx_spp[0]
        assert f_yy_spep[0] == f_yy_spp[0]
        assert f_xy_spep[0] == f_xy_spp[0]
        x = np.array([1, 3, 4])
        y = np.array([2, 1, 1])
        f_xx_spep, f_yy_spep, f_xy_spep = self.SPEP.hessian(
            x, y, E, gamma, q, phi_G)
        f_xx_spp, f_yy_spp, f_xy_spp = self.SPP.hessian(x, y, E, gamma)
        assert f_xx_spep[0] == f_xx_spp[0]
        assert f_yy_spep[0] == f_yy_spp[0]
        assert f_xy_spep[0] == f_xy_spp[0]
        assert f_xx_spep[1] == f_xx_spp[1]
        assert f_yy_spep[1] == f_yy_spp[1]
        assert f_xy_spep[1] == f_xy_spp[1]
        assert f_xx_spep[2] == f_xx_spp[2]
        assert f_yy_spep[2] == f_yy_spp[2]
        assert f_xy_spep[2] == f_xy_spp[2]

    def test_compare_sis(self):
        x = np.array([1])
        y = np.array([2])
        theta_E = 1.
        gamma = 2.
        f_sis = self.SIS.function(x, y, theta_E)
        f_spp = self.SPP.function(x, y, theta_E, gamma)
        f_x_sis, f_y_sis = self.SIS.derivatives(x, y, theta_E)
        f_x_spp, f_y_spp = self.SPP.derivatives(x, y, theta_E, gamma)
        f_xx_sis, f_yy_sis, f_xy_sis = self.SIS.hessian(x, y, theta_E)
        f_xx_spp, f_yy_spp, f_xy_spp = self.SPP.hessian(x, y, theta_E, gamma)
        npt.assert_almost_equal(f_sis[0], f_spp[0], decimal=7)
        npt.assert_almost_equal(f_x_sis[0], f_x_spp[0], decimal=7)
        npt.assert_almost_equal(f_y_sis[0], f_y_spp[0], decimal=7)
        npt.assert_almost_equal(f_xx_sis[0], f_xx_spp[0], decimal=7)
        npt.assert_almost_equal(f_yy_sis[0], f_yy_spp[0], decimal=7)
        npt.assert_almost_equal(f_xy_sis[0], f_xy_spp[0], decimal=7)

    def test_unit_conversion(self):
        theta_E = 2.
        gamma = 2.2
        rho0 = self.SPP.theta2rho(theta_E, gamma)
        theta_E_out = self.SPP.rho2theta(rho0, gamma)
        assert theta_E == theta_E_out

    def test_mass_2d_lens(self):
        r = 1
        theta_E = 1
        gamma = 2
        m_2d = self.SPP.mass_2d_lens(r, theta_E, gamma)
        npt.assert_almost_equal(m_2d, 3.1415926535897931, decimal=8)

    def test_grav_pot(self):
        x, y = 1, 0
        rho0 = 1
        gamma = 2
        grav_pot = self.SPP.grav_pot(x, y, rho0, gamma, center_x=0, center_y=0)
        npt.assert_almost_equal(grav_pot, 12.566370614359172, decimal=8)
Beispiel #11
0
 def setup(self):
     self.SPEP = SPEP()
     self.SPP = SPP()
     self.SIS = SIS()
Beispiel #12
0
    def _import_class(lens_type,
                      custom_class,
                      kwargs_interp,
                      z_lens=None,
                      z_source=None):
        """

        :param lens_type: string, lens model type
        :param custom_class: custom class
        :param z_lens: lens redshift  # currently only used in NFW_MC model as this is redshift dependent
        :param z_source: source redshift  # currently only used in NFW_MC model as this is redshift dependent
        :param kwargs_interp: interpolation keyword arguments specifying the numerics.
         See description in the Interpolate() class. Only applicable for 'INTERPOL' and 'INTERPOL_SCALED' models.
        :return: class instance of the lens model type
        """

        if lens_type == 'SHIFT':
            from lenstronomy.LensModel.Profiles.constant_shift import Shift
            return Shift()
        elif lens_type == 'NIE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.nie_potential import NIE_POTENTIAL
            return NIE_POTENTIAL()
        elif lens_type == 'CONST_MAG':
            from lenstronomy.LensModel.Profiles.const_mag import ConstMag
            return ConstMag()
        elif lens_type == 'SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            return Shear()
        elif lens_type == 'SHEAR_GAMMA_PSI':
            from lenstronomy.LensModel.Profiles.shear import ShearGammaPsi
            return ShearGammaPsi()
        elif lens_type == 'SHEAR_REDUCED':
            from lenstronomy.LensModel.Profiles.shear import ShearReduced
            return ShearReduced()
        elif lens_type == 'CONVERGENCE':
            from lenstronomy.LensModel.Profiles.convergence import Convergence
            return Convergence()
        elif lens_type == 'HESSIAN':
            from lenstronomy.LensModel.Profiles.hessian import Hessian
            return Hessian()
        elif lens_type == 'FLEXION':
            from lenstronomy.LensModel.Profiles.flexion import Flexion
            return Flexion()
        elif lens_type == 'FLEXIONFG':
            from lenstronomy.LensModel.Profiles.flexionfg import Flexionfg
            return Flexionfg()
        elif lens_type == 'POINT_MASS':
            from lenstronomy.LensModel.Profiles.point_mass import PointMass
            return PointMass()
        elif lens_type == 'SIS':
            from lenstronomy.LensModel.Profiles.sis import SIS
            return SIS()
        elif lens_type == 'SIS_TRUNCATED':
            from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate
            return SIS_truncate()
        elif lens_type == 'SIE':
            from lenstronomy.LensModel.Profiles.sie import SIE
            return SIE()
        elif lens_type == 'SPP':
            from lenstronomy.LensModel.Profiles.spp import SPP
            return SPP()
        elif lens_type == 'NIE':
            from lenstronomy.LensModel.Profiles.nie import NIE
            return NIE()
        elif lens_type == 'NIE_SIMPLE':
            from lenstronomy.LensModel.Profiles.nie import NIEMajorAxis
            return NIEMajorAxis()
        elif lens_type == 'CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import Chameleon
            return Chameleon()
        elif lens_type == 'DOUBLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon
            return DoubleChameleon()
        elif lens_type == 'TRIPLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import TripleChameleon
            return TripleChameleon()
        elif lens_type == 'SPEP':
            from lenstronomy.LensModel.Profiles.spep import SPEP
            return SPEP()
        elif lens_type == 'PEMD':
            from lenstronomy.LensModel.Profiles.pemd import PEMD
            return PEMD()
        elif lens_type == 'SPEMD':
            from lenstronomy.LensModel.Profiles.spemd import SPEMD
            return SPEMD()
        elif lens_type == 'EPL':
            from lenstronomy.LensModel.Profiles.epl import EPL
            return EPL()
        elif lens_type == 'EPL_NUMBA':
            from lenstronomy.LensModel.Profiles.epl_numba import EPL_numba
            return EPL_numba()
        elif lens_type == 'SPL_CORE':
            from lenstronomy.LensModel.Profiles.splcore import SPLCORE
            return SPLCORE()
        elif lens_type == 'NFW':
            from lenstronomy.LensModel.Profiles.nfw import NFW
            return NFW()
        elif lens_type == 'NFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE
            return NFW_ELLIPSE()
        elif lens_type == 'NFW_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import NFWEllipseGaussDec
            return NFWEllipseGaussDec()
        elif lens_type == 'NFW_ELLIPSE_CSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse_cse import NFW_ELLIPSE_CSE
            return NFW_ELLIPSE_CSE()
        elif lens_type == 'TNFW':
            from lenstronomy.LensModel.Profiles.tnfw import TNFW
            return TNFW()
        elif lens_type == 'TNFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.tnfw_ellipse import TNFW_ELLIPSE
            return TNFW_ELLIPSE()
        elif lens_type == 'CNFW':
            from lenstronomy.LensModel.Profiles.cnfw import CNFW
            return CNFW()
        elif lens_type == 'CNFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.cnfw_ellipse import CNFW_ELLIPSE
            return CNFW_ELLIPSE()
        elif lens_type == 'CTNFW_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import CTNFWGaussDec
            return CTNFWGaussDec()
        elif lens_type == 'NFW_MC':
            from lenstronomy.LensModel.Profiles.nfw_mass_concentration import NFWMC
            return NFWMC(z_lens=z_lens, z_source=z_source)
        elif lens_type == 'SERSIC':
            from lenstronomy.LensModel.Profiles.sersic import Sersic
            return Sersic()
        elif lens_type == 'SERSIC_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_potential import SersicEllipse
            return SersicEllipse()
        elif lens_type == 'SERSIC_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_kappa import SersicEllipseKappa
            return SersicEllipseKappa()
        elif lens_type == 'SERSIC_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import SersicEllipseGaussDec
            return SersicEllipseGaussDec()
        elif lens_type == 'PJAFFE':
            from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
            return PJaffe()
        elif lens_type == 'PJAFFE_ELLIPSE':
            from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse
            return PJaffe_Ellipse()
        elif lens_type == 'HERNQUIST':
            from lenstronomy.LensModel.Profiles.hernquist import Hernquist
            return Hernquist()
        elif lens_type == 'HERNQUIST_ELLIPSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse
            return Hernquist_Ellipse()
        elif lens_type == 'HERNQUIST_ELLIPSE_CSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse_cse import HernquistEllipseCSE
            return HernquistEllipseCSE()
        elif lens_type == 'GAUSSIAN':
            from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
            return Gaussian()
        elif lens_type == 'GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa
            return GaussianKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_kappa import GaussianEllipseKappa
            return GaussianEllipseKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_potential import GaussianEllipsePotential
            return GaussianEllipsePotential()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
            return MultiGaussianKappa()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse
            return MultiGaussianKappaEllipse()
        elif lens_type == 'INTERPOL':
            from lenstronomy.LensModel.Profiles.interpol import Interpol
            return Interpol(**kwargs_interp)
        elif lens_type == 'INTERPOL_SCALED':
            from lenstronomy.LensModel.Profiles.interpol import InterpolScaled
            return InterpolScaled(**kwargs_interp)
        elif lens_type == 'SHAPELETS_POLAR':
            from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets
            return PolarShapelets()
        elif lens_type == 'SHAPELETS_CART':
            from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets
            return CartShapelets()
        elif lens_type == 'DIPOLE':
            from lenstronomy.LensModel.Profiles.dipole import Dipole
            return Dipole()
        elif lens_type == 'CURVED_ARC_CONST':
            from lenstronomy.LensModel.Profiles.curved_arc_const import CurvedArcConst
            return CurvedArcConst()
        elif lens_type == 'CURVED_ARC_CONST_MST':
            from lenstronomy.LensModel.Profiles.curved_arc_const import CurvedArcConstMST
            return CurvedArcConstMST()
        elif lens_type == 'CURVED_ARC_SPP':
            from lenstronomy.LensModel.Profiles.curved_arc_spp import CurvedArcSPP
            return CurvedArcSPP()
        elif lens_type == 'CURVED_ARC_SIS_MST':
            from lenstronomy.LensModel.Profiles.curved_arc_sis_mst import CurvedArcSISMST
            return CurvedArcSISMST()
        elif lens_type == 'CURVED_ARC_SPT':
            from lenstronomy.LensModel.Profiles.curved_arc_spt import CurvedArcSPT
            return CurvedArcSPT()
        elif lens_type == 'CURVED_ARC_TAN_DIFF':
            from lenstronomy.LensModel.Profiles.curved_arc_tan_diff import CurvedArcTanDiff
            return CurvedArcTanDiff()
        elif lens_type == 'ARC_PERT':
            from lenstronomy.LensModel.Profiles.arc_perturbations import ArcPerturbations
            return ArcPerturbations()
        elif lens_type == 'coreBURKERT':
            from lenstronomy.LensModel.Profiles.coreBurkert import CoreBurkert
            return CoreBurkert()
        elif lens_type == 'CORED_DENSITY':
            from lenstronomy.LensModel.Profiles.cored_density import CoredDensity
            return CoredDensity()
        elif lens_type == 'CORED_DENSITY_2':
            from lenstronomy.LensModel.Profiles.cored_density_2 import CoredDensity2
            return CoredDensity2()
        elif lens_type == 'CORED_DENSITY_EXP':
            from lenstronomy.LensModel.Profiles.cored_density_exp import CoredDensityExp
            return CoredDensityExp()
        elif lens_type == 'CORED_DENSITY_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY')
        elif lens_type == 'CORED_DENSITY_2_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY_2')
        elif lens_type == 'CORED_DENSITY_EXP_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY_EXP')
        elif lens_type == 'NumericalAlpha':
            from lenstronomy.LensModel.Profiles.numerical_deflections import NumericalAlpha
            return NumericalAlpha(custom_class)
        elif lens_type == 'MULTIPOLE':
            from lenstronomy.LensModel.Profiles.multipole import Multipole
            return Multipole()
        elif lens_type == 'CSE':
            from lenstronomy.LensModel.Profiles.cored_steep_ellipsoid import CSE
            return CSE()
        elif lens_type == 'ElliSLICE':
            from lenstronomy.LensModel.Profiles.elliptical_density_slice import ElliSLICE
            return ElliSLICE()
        elif lens_type == 'ULDM':
            from lenstronomy.LensModel.Profiles.uldm import Uldm
            return Uldm()
        elif lens_type == 'CORED_DENSITY_ULDM_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY_ULDM')
        else:
            raise ValueError(
                '%s is not a valid lens model. Supported are: %s.' %
                (lens_type, _SUPPORTED_MODELS))
Beispiel #13
0
 def setup(self):
     from lenstronomy.LensModel.Profiles.spemd import SPEMD
     from lenstronomy.LensModel.Profiles.spep import SPEP
     self.SPEMD = SPEMD()
     self.SPEP = SPEP()
Beispiel #14
0
class TestSPEMD(object):
    """
    tests the Gaussian methods
    """
    def setup(self):
        from lenstronomy.LensModel.Profiles.spemd import SPEMD
        from lenstronomy.LensModel.Profiles.spep import SPEP
        self.SPEMD = SPEMD()
        self.SPEP = SPEP()

    def test_function(self):
        phi_E = 1.
        gamma = 1.9
        q = 0.9
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        x = np.array([1.])
        y = np.array([2])
        a = np.zeros_like(x)
        values = self.SPEMD.function(x, y, phi_E, gamma, e1, e2)
        if fastell4py_bool:
            assert values == 2.1567297115381039
        else:
            assert values == 0
        a += values
        x = np.array(1.)
        y = np.array(2.)
        a = np.zeros_like(x)
        values = self.SPEMD.function(x, y, phi_E, gamma, e1, e2)
        print(x, values)
        a += values
        if fastell4py_bool:
            assert values == 2.1567297115381039
        else:
            assert values == 0
        assert type(x) == type(values)

        x = np.array([2, 3, 4])
        y = np.array([1, 1, 1])
        values = self.SPEMD.function(x, y, phi_E, gamma, e1, e2)
        if fastell4py_bool:
            npt.assert_almost_equal(values[0], 2.1798076611034141, decimal=7)
            npt.assert_almost_equal(values[1], 3.209319798597186, decimal=7)
            npt.assert_almost_equal(values[2], 4.3105937398856398, decimal=7)
        else:
            npt.assert_almost_equal(values[0], 0, decimal=7)
            npt.assert_almost_equal(values[1], 0, decimal=7)
            npt.assert_almost_equal(values[2], 0, decimal=7)

    def test_derivatives(self):
        x = np.array([1])
        y = np.array([2])
        phi_E = 1.
        gamma = 1.9
        q = 0.9
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_x, f_y = self.SPEMD.derivatives(x, y, phi_E, gamma, e1, e2)
        if fastell4py_bool:
            npt.assert_almost_equal(f_x[0], 0.46663367437984204, decimal=7)
            npt.assert_almost_equal(f_y[0], 0.95307422686028065, decimal=7)
        else:
            npt.assert_almost_equal(f_x[0], 0, decimal=7)
            npt.assert_almost_equal(f_y[0], 0, decimal=7)

        x = np.array([1., 3, 4])
        y = np.array([2., 1, 1])
        a = np.zeros_like(x)
        values = self.SPEMD.derivatives(x, y, phi_E, gamma, e1, e2)
        if fastell4py_bool:
            npt.assert_almost_equal(values[0][0],
                                    0.46663367437984204,
                                    decimal=7)
            npt.assert_almost_equal(values[1][0],
                                    0.95307422686028065,
                                    decimal=7)
            npt.assert_almost_equal(values[0][1],
                                    1.0722152681324291,
                                    decimal=7)
            npt.assert_almost_equal(values[1][1],
                                    0.31400298272329669,
                                    decimal=7)
        else:
            npt.assert_almost_equal(values[0][0], 0, decimal=7)
            npt.assert_almost_equal(values[1][0], 0, decimal=7)
            npt.assert_almost_equal(values[0][1], 0, decimal=7)
            npt.assert_almost_equal(values[1][1], 0, decimal=7)
        a += values[0]
        x = 1.
        y = 2.
        phi_E = 1.
        gamma = 1.9
        q = 0.9
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_x, f_y = self.SPEMD.derivatives(x, y, phi_E, gamma, e1, e2)
        if fastell4py_bool:
            npt.assert_almost_equal(f_x, 0.46663367437984204, decimal=7)
            npt.assert_almost_equal(f_y, 0.95307422686028065, decimal=7)
        else:
            npt.assert_almost_equal(f_x, 0, decimal=7)
            npt.assert_almost_equal(f_y, 0, decimal=7)
        x = 0.
        y = 0.
        f_x, f_y = self.SPEMD.derivatives(x, y, phi_E, gamma, e1, e2)
        assert f_x == 0.
        assert f_y == 0.

    def test_hessian(self):
        x = np.array([1])
        y = np.array([2])
        phi_E = 1.
        gamma = 1.9
        q = 0.9
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_xx, f_yy, f_xy = self.SPEMD.hessian(x, y, phi_E, gamma, e1, e2)
        if fastell4py_bool:
            npt.assert_almost_equal(f_xx, 0.41789957732890953, decimal=7)
            npt.assert_almost_equal(f_yy, 0.14047593655054141, decimal=7)
            npt.assert_almost_equal(f_xy, -0.18560737698052343, decimal=7)
        else:
            npt.assert_almost_equal(f_xx, 0, decimal=7)
            npt.assert_almost_equal(f_yy, 0, decimal=7)
            npt.assert_almost_equal(f_xy, 0, decimal=7)

        x = 1.
        y = 2.
        phi_E = 1.
        gamma = 1.9
        q = 0.9
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        a = np.zeros_like(x)
        f_xx, f_yy, f_xy = self.SPEMD.hessian(x, y, phi_E, gamma, e1, e2)
        if fastell4py_bool:
            npt.assert_almost_equal(f_xx, 0.41789957732890953, decimal=7)
            npt.assert_almost_equal(f_yy, 0.14047593655054141, decimal=7)
            npt.assert_almost_equal(f_xy, -0.18560737698052343, decimal=7)
        else:
            npt.assert_almost_equal(f_xx, 0, decimal=7)
            npt.assert_almost_equal(f_yy, 0, decimal=7)
            npt.assert_almost_equal(f_xy, 0, decimal=7)
        a += f_xx
        x = np.array([1, 3, 4])
        y = np.array([2, 1, 1])
        values = self.SPEMD.hessian(x, y, phi_E, gamma, e1, e2)
        print(values, 'values')
        if fastell4py_bool:
            npt.assert_almost_equal(values[0][0],
                                    0.41789957732890953,
                                    decimal=7)
            npt.assert_almost_equal(values[1][0],
                                    0.14047593655054141,
                                    decimal=7)
            npt.assert_almost_equal(values[2][0],
                                    -0.18560737698052343,
                                    decimal=7)
            npt.assert_almost_equal(values[0][1],
                                    0.068359818958208918,
                                    decimal=7)
            npt.assert_almost_equal(values[1][1],
                                    0.32494089371516482,
                                    decimal=7)
            npt.assert_almost_equal(values[2][1],
                                    -0.097845438684594374,
                                    decimal=7)
        else:
            npt.assert_almost_equal(values[0][0], 0, decimal=7)

    def test_spep_spemd(self):
        x = np.array([1])
        y = np.array([0])
        phi_E = 1.
        gamma = 2.
        q = 1.
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_x, f_y = self.SPEMD.derivatives(x, y, phi_E, gamma, e1, e2)
        f_x_spep, f_y_spep = self.SPEP.derivatives(x, y, phi_E, gamma, e1, e2)
        if fastell4py_bool:
            npt.assert_almost_equal(f_x[0], f_x_spep[0], decimal=2)
        else:
            pass

        theta_E = 2.
        gamma = 2.
        q = 1.
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_x, f_y = self.SPEMD.derivatives(x, y, theta_E, gamma, e1, e2)
        f_x_spep, f_y_spep = self.SPEP.derivatives(x, y, theta_E, gamma, e1,
                                                   e2)
        if fastell4py_bool:
            npt.assert_almost_equal(f_x[0], f_x_spep[0], decimal=2)
        else:
            pass

        theta_E = 2.
        gamma = 1.7
        q = 1.
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_x, f_y = self.SPEMD.derivatives(x, y, theta_E, gamma, e1, e2)
        f_x_spep, f_y_spep = self.SPEP.derivatives(x, y, theta_E, gamma, e1,
                                                   e2)
        if fastell4py_bool:
            npt.assert_almost_equal(f_x[0], f_x_spep[0], decimal=4)

    def test_bounds(self):
        from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
        profile = SPEMD_SMOOTH()
        theta_E, gamma, q, phi_G, s_scale = profile._parameter_constraints(
            theta_E=-1, s_scale=0, gamma=3, q=2, phi_G=0)
        assert theta_E == 0

    def test_is_not_empty(self):
        func = self.SPEMD.spemd_smooth.is_not_empty

        assert func(0.1, 0.2)
        assert func([0.1], [0.2])
        assert func((0.1, 0.3), (0.2, 0.4))
        assert func(np.array([0.1]), np.array([0.2]))
        assert not func([], [])
        assert not func(np.array([]), np.array([]))

    def test_density_lens(self):
        r = 1
        kwargs = {'theta_E': 1, 'gamma': 2, 'e1': 0, 'e2': 0}
        rho = self.SPEMD.density_lens(r, **kwargs)
        rho_spep = self.SPEP.density_lens(r, **kwargs)
        npt.assert_almost_equal(rho, rho_spep, decimal=7)
Beispiel #15
0
 def setup(self):
     from lenstronomy.LensModel.Profiles.pemd import PEMD
     from lenstronomy.LensModel.Profiles.spep import SPEP
     self.PEMD = PEMD(suppress_fastell=True)
     self.SPEP = SPEP()
Beispiel #16
0
class TestSPEP(object):
    """
    tests the Gaussian methods
    """
    def setup(self):
        self.SPEP = SPEP()
        self.SIE = SIE()

    def test_function(self):
        x = 1
        y = 2
        phi_E = 1.
        gamma = 1.9
        q = 0.9
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        values = self.SPEP.function(x, y, phi_E, gamma, e1, e2)
        npt.assert_almost_equal(values, 2.104213947346917, decimal=7)
        x = np.array([0])
        y = np.array([0])
        values = self.SPEP.function(x, y, phi_E, gamma, e1, e2)
        assert values[0] == 0

        x = np.array([2, 3, 4])
        y = np.array([1, 1, 1])
        values = self.SPEP.function(x, y, phi_E, gamma, e1, e2)
        npt.assert_almost_equal(values[0], 2.1709510681181285, decimal=7)
        npt.assert_almost_equal(values[1], 3.2293397784259108, decimal=7)
        npt.assert_almost_equal(values[2], 4.3624056004556948, decimal=7)

    def test_derivatives(self):
        x = np.array([1])
        y = np.array([2])
        phi_E = 1.
        gamma = 1.9
        q = 0.9
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_x, f_y = self.SPEP.derivatives(x, y, phi_E, gamma, e1, e2)
        npt.assert_almost_equal(f_x[0], 0.43989645846696634, decimal=7)
        npt.assert_almost_equal(f_y[0], 0.93736944180732129, decimal=7)

        x = np.array([0])
        y = np.array([0])
        f_x, f_y = self.SPEP.derivatives(x, y, phi_E, gamma, e1, e2)
        assert f_x[0] == 0
        assert f_y[0] == 0

        x = np.array([1, 3, 4])
        y = np.array([2, 1, 1])
        values = self.SPEP.derivatives(x, y, phi_E, gamma, e1, e2)
        npt.assert_almost_equal(values[0][0], 0.43989645846696634, decimal=7)
        npt.assert_almost_equal(values[1][0], 0.93736944180732129, decimal=7)
        npt.assert_almost_equal(values[0][1], 1.1029501948308649, decimal=7)
        npt.assert_almost_equal(values[1][1], 0.24342317177590794, decimal=7)

        x = 1
        y = 2
        phi_E = 1.
        gamma = 1.9
        q = 0.9
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_x, f_y = self.SPEP.derivatives(x, y, phi_E, gamma, e1, e2)
        npt.assert_almost_equal(f_x, 0.43989645846696634, decimal=7)
        npt.assert_almost_equal(f_y, 0.93736944180732129, decimal=7)
        x = 0
        y = 0
        f_x, f_y = self.SPEP.derivatives(x, y, phi_E, gamma, e1, e2)
        assert f_x == 0
        assert f_y == 0

    def test_hessian(self):
        x = np.array([1])
        y = np.array([2])
        phi_E = 1.
        gamma = 1.9
        q = 0.9
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_xx, f_yy,f_xy = self.SPEP.hessian(x, y, phi_E, gamma, e1, e2)
        npt.assert_almost_equal(f_xx[0], 0.46312881977317422, decimal=7)
        npt.assert_almost_equal(f_yy[0], 0.15165326557198552, decimal=7)
        npt.assert_almost_equal(f_xy[0], -0.20956958696323871, decimal=7)
        x = np.array([1,3,4])
        y = np.array([2,1,1])
        values = self.SPEP.hessian(x, y, phi_E, gamma, e1, e2)
        npt.assert_almost_equal(values[0][0], 0.46312881977317422, decimal=7)
        npt.assert_almost_equal(values[1][0], 0.15165326557198552, decimal=7)
        npt.assert_almost_equal(values[2][0], -0.20956958696323871, decimal=7)
        npt.assert_almost_equal(values[0][1], 0.070999592014527796, decimal=7)
        npt.assert_almost_equal(values[1][1], 0.33245358685908111, decimal=7)
        npt.assert_almost_equal(values[2][1], -0.10270375656049677, decimal=7)

    def test_spep_sie_conventions(self):
        x = np.array([1., 2., 0.])
        y = np.array([2, 1., 1.])
        phi_E = 1.
        gamma = 2
        q = 0.9999
        phi_G = 1.
        e1, e2 = param_util.phi_q2_ellipticity(phi_G, q)
        f_xx, f_yy, f_xy = self.SPEP.hessian(x, y, phi_E, gamma, e1, e2)
        f_xx_sie, f_yy_sie, f_xy_sie = self.SIE.hessian(x, y, phi_E, e1, e2)
        npt.assert_almost_equal(f_xx, f_xx_sie, decimal=4)
        npt.assert_almost_equal(f_yy, f_yy_sie, decimal=4)
        npt.assert_almost_equal(f_xy, f_xy_sie, decimal=4)
    def _import_class(lens_type, custom_class, z_lens=None, z_source=None):
        """

        :param lens_type: string, lens model type
        :param custom_class: custom class
        :param z_lens: lens redshift  # currently only used in NFW_MC model as this is redshift dependent
        :param z_source: source redshift  # currently only used in NFW_MC model as this is redshift dependent
        :return: class instance of the lens model type
        """

        if lens_type == 'SHIFT':
            from lenstronomy.LensModel.Profiles.alpha_shift import Shift
            return Shift()
        elif lens_type == 'SHEAR':
            from lenstronomy.LensModel.Profiles.shear import Shear
            return Shear()
        elif lens_type == 'SHEAR_GAMMA_PSI':
            from lenstronomy.LensModel.Profiles.shear import ShearGammaPsi
            return ShearGammaPsi()
        elif lens_type == 'CONVERGENCE':
            from lenstronomy.LensModel.Profiles.convergence import Convergence
            return Convergence()
        elif lens_type == 'FLEXION':
            from lenstronomy.LensModel.Profiles.flexion import Flexion
            return Flexion()
        elif lens_type == 'FLEXIONFG':
            from lenstronomy.LensModel.Profiles.flexionfg import Flexionfg
            return Flexionfg()
        elif lens_type == 'POINT_MASS':
            from lenstronomy.LensModel.Profiles.point_mass import PointMass
            return PointMass()
        elif lens_type == 'SIS':
            from lenstronomy.LensModel.Profiles.sis import SIS
            return SIS()
        elif lens_type == 'SIS_TRUNCATED':
            from lenstronomy.LensModel.Profiles.sis_truncate import SIS_truncate
            return SIS_truncate()
        elif lens_type == 'SIE':
            from lenstronomy.LensModel.Profiles.sie import SIE
            return SIE()
        elif lens_type == 'SPP':
            from lenstronomy.LensModel.Profiles.spp import SPP
            return SPP()
        elif lens_type == 'NIE':
            from lenstronomy.LensModel.Profiles.nie import NIE
            return NIE()
        elif lens_type == 'NIE_SIMPLE':
            from lenstronomy.LensModel.Profiles.nie import NIEMajorAxis
            return NIEMajorAxis()
        elif lens_type == 'CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import Chameleon
            return Chameleon()
        elif lens_type == 'DOUBLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import DoubleChameleon
            return DoubleChameleon()
        elif lens_type == 'TRIPLE_CHAMELEON':
            from lenstronomy.LensModel.Profiles.chameleon import TripleChameleon
            return TripleChameleon()
        elif lens_type == 'SPEP':
            from lenstronomy.LensModel.Profiles.spep import SPEP
            return SPEP()
        elif lens_type == 'SPEMD':
            from lenstronomy.LensModel.Profiles.spemd import SPEMD
            return SPEMD()
        elif lens_type == 'SPEMD_SMOOTH':
            from lenstronomy.LensModel.Profiles.spemd_smooth import SPEMD_SMOOTH
            return SPEMD_SMOOTH()
        elif lens_type == 'NFW':
            from lenstronomy.LensModel.Profiles.nfw import NFW
            return NFW()
        elif lens_type == 'NFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.nfw_ellipse import NFW_ELLIPSE
            return NFW_ELLIPSE()
        elif lens_type == 'NFW_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import NFWEllipseGaussDec
            return NFWEllipseGaussDec()
        elif lens_type == 'TNFW':
            from lenstronomy.LensModel.Profiles.tnfw import TNFW
            return TNFW()
        elif lens_type == 'CNFW':
            from lenstronomy.LensModel.Profiles.cnfw import CNFW
            return CNFW()
        elif lens_type == 'CNFW_ELLIPSE':
            from lenstronomy.LensModel.Profiles.cnfw_ellipse import CNFW_ELLIPSE
            return CNFW_ELLIPSE()
        elif lens_type == 'CTNFW_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition import CTNFWGaussDec
            return CTNFWGaussDec()
        elif lens_type == 'NFW_MC':
            from lenstronomy.LensModel.Profiles.nfw_mass_concentration import NFWMC
            return NFWMC(z_lens=z_lens, z_source=z_source)
        elif lens_type == 'SERSIC':
            from lenstronomy.LensModel.Profiles.sersic import Sersic
            return Sersic()
        elif lens_type == 'SERSIC_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_potential import SersicEllipse
            return SersicEllipse()
        elif lens_type == 'SERSIC_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.sersic_ellipse_kappa import SersicEllipseKappa
            return SersicEllipseKappa()
        elif lens_type == 'SERSIC_ELLIPSE_GAUSS_DEC':
            from lenstronomy.LensModel.Profiles.gauss_decomposition \
                import SersicEllipseGaussDec
            return SersicEllipseGaussDec()
        elif lens_type == 'PJAFFE':
            from lenstronomy.LensModel.Profiles.p_jaffe import PJaffe
            return PJaffe()
        elif lens_type == 'PJAFFE_ELLIPSE':
            from lenstronomy.LensModel.Profiles.p_jaffe_ellipse import PJaffe_Ellipse
            return PJaffe_Ellipse()
        elif lens_type == 'HERNQUIST':
            from lenstronomy.LensModel.Profiles.hernquist import Hernquist
            return Hernquist()
        elif lens_type == 'HERNQUIST_ELLIPSE':
            from lenstronomy.LensModel.Profiles.hernquist_ellipse import Hernquist_Ellipse
            return Hernquist_Ellipse()
        elif lens_type == 'GAUSSIAN':
            from lenstronomy.LensModel.Profiles.gaussian_potential import Gaussian
            return Gaussian()
        elif lens_type == 'GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_kappa import GaussianKappa
            return GaussianKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_KAPPA':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_kappa import GaussianEllipseKappa
            return GaussianEllipseKappa()
        elif lens_type == 'GAUSSIAN_ELLIPSE_POTENTIAL':
            from lenstronomy.LensModel.Profiles.gaussian_ellipse_potential import GaussianEllipsePotential
            return GaussianEllipsePotential()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappa
            return MultiGaussianKappa()
        elif lens_type == 'MULTI_GAUSSIAN_KAPPA_ELLIPSE':
            from lenstronomy.LensModel.Profiles.multi_gaussian_kappa import MultiGaussianKappaEllipse
            return MultiGaussianKappaEllipse()
        elif lens_type == 'INTERPOL':
            from lenstronomy.LensModel.Profiles.interpol import Interpol
            return Interpol()
        elif lens_type == 'INTERPOL_SCALED':
            from lenstronomy.LensModel.Profiles.interpol import InterpolScaled
            return InterpolScaled()
        elif lens_type == 'SHAPELETS_POLAR':
            from lenstronomy.LensModel.Profiles.shapelet_pot_polar import PolarShapelets
            return PolarShapelets()
        elif lens_type == 'SHAPELETS_CART':
            from lenstronomy.LensModel.Profiles.shapelet_pot_cartesian import CartShapelets
            return CartShapelets()
        elif lens_type == 'DIPOLE':
            from lenstronomy.LensModel.Profiles.dipole import Dipole
            return Dipole()
        elif lens_type == 'CURVED_ARC':
            from lenstronomy.LensModel.Profiles.curved_arc import CurvedArc
            return CurvedArc()
        elif lens_type == 'ARC_PERT':
            from lenstronomy.LensModel.Profiles.arc_perturbations import ArcPerturbations
            return ArcPerturbations()
        elif lens_type == 'coreBURKERT':
            from lenstronomy.LensModel.Profiles.coreBurkert import CoreBurkert
            return CoreBurkert()
        elif lens_type == 'CORED_DENSITY':
            from lenstronomy.LensModel.Profiles.cored_density import CoredDensity
            return CoredDensity()
        elif lens_type == 'CORED_DENSITY_2':
            from lenstronomy.LensModel.Profiles.cored_density_2 import CoredDensity2
            return CoredDensity2()
        elif lens_type == 'CORED_DENSITY_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY')
        elif lens_type == 'CORED_DENSITY_2_MST':
            from lenstronomy.LensModel.Profiles.cored_density_mst import CoredDensityMST
            return CoredDensityMST(profile_type='CORED_DENSITY_2')
        elif lens_type == 'NumericalAlpha':
            from lenstronomy.LensModel.Profiles.numerical_deflections import NumericalAlpha
            return NumericalAlpha(custom_class)
        else:
            raise ValueError('%s is not a valid lens model' % lens_type)
Beispiel #18
0
class TestSPEMD(object):
        """
        tests the Gaussian methods
        """
        def setup(self):
            from lenstronomy.LensModel.Profiles.spemd import SPEMD
            from lenstronomy.LensModel.Profiles.spep import SPEP
            self.SPEMD = SPEMD()
            self.SPEP = SPEP()

        def test_function(self):
            phi_E = 1.
            gamma = 1.9
            q = 0.9
            phi_G = 1.
            x = np.array([1.])
            y = np.array([2])
            a = np.zeros_like(x)
            values = self.SPEMD.function(x, y, phi_E, gamma, q, phi_G)
            if fastell4py_bool:
                assert values == 2.1567297115381039
            else:
                assert values == 0
            a += values
            x = np.array(1.)
            y = np.array(2.)
            a = np.zeros_like(x)
            values = self.SPEMD.function(x, y, phi_E, gamma, q, phi_G)
            print(x, values)
            a += values
            if fastell4py_bool:
                assert values == 2.1567297115381039
            else:
                assert values == 0
            assert type(x) == type(values)

            x = np.array([2, 3, 4])
            y = np.array([1, 1, 1])
            values = self.SPEMD.function(x, y, phi_E, gamma, q, phi_G)
            if fastell4py_bool:
                npt.assert_almost_equal(values[0], 2.1798076611034141, decimal=7)
                npt.assert_almost_equal(values[1], 3.209319798597186, decimal=7)
                npt.assert_almost_equal(values[2], 4.3105937398856398, decimal=7)
            else:
                npt.assert_almost_equal(values[0], 0, decimal=7)
                npt.assert_almost_equal(values[1], 0, decimal=7)
                npt.assert_almost_equal(values[2], 0, decimal=7)

        def test_derivatives(self):
            x = np.array([1])
            y = np.array([2])
            phi_E = 1.
            gamma = 1.9
            q = 0.9
            phi_G = 1.
            f_x, f_y = self.SPEMD.derivatives(x, y, phi_E, gamma, q, phi_G)
            if fastell4py_bool:
                npt.assert_almost_equal(f_x[0], 0.46663367437984204, decimal=7)
                npt.assert_almost_equal(f_y[0], 0.95307422686028065, decimal=7)
            else:
                npt.assert_almost_equal(f_x[0], 0, decimal=7)
                npt.assert_almost_equal(f_y[0], 0, decimal=7)

            x = np.array([1., 3, 4])
            y = np.array([2., 1, 1])
            a = np.zeros_like(x)
            values = self.SPEMD.derivatives(x, y, phi_E, gamma, q, phi_G)
            if fastell4py_bool:
                npt.assert_almost_equal(values[0][0], 0.46663367437984204, decimal=7)
                npt.assert_almost_equal(values[1][0], 0.95307422686028065, decimal=7)
                npt.assert_almost_equal(values[0][1], 1.0722152681324291, decimal=7)
                npt.assert_almost_equal(values[1][1], 0.31400298272329669, decimal=7)
            else:
                npt.assert_almost_equal(values[0][0], 0, decimal=7)
                npt.assert_almost_equal(values[1][0], 0, decimal=7)
                npt.assert_almost_equal(values[0][1], 0, decimal=7)
                npt.assert_almost_equal(values[1][1], 0, decimal=7)
            a += values[0]
            x = 1.
            y = 2.
            phi_E = 1.
            gamma = 1.9
            q = 0.9
            phi_G = 1.
            f_x, f_y = self.SPEMD.derivatives(x, y, phi_E, gamma, q, phi_G)
            if fastell4py_bool:
                npt.assert_almost_equal(f_x, 0.46663367437984204, decimal=7)
                npt.assert_almost_equal(f_y, 0.95307422686028065, decimal=7)
            else:
                npt.assert_almost_equal(f_x, 0, decimal=7)
                npt.assert_almost_equal(f_y, 0, decimal=7)
            x = 0.
            y = 0.
            f_x, f_y = self.SPEMD.derivatives(x, y, phi_E, gamma, q, phi_G)
            assert f_x == 0.
            assert f_y == 0.

        def test_hessian(self):
            x = np.array([1])
            y = np.array([2])
            phi_E = 1.
            gamma = 1.9
            q = 0.9
            phi_G = 1.
            f_xx, f_yy,f_xy = self.SPEMD.hessian(x, y, phi_E, gamma, q, phi_G)
            if fastell4py_bool:
                npt.assert_almost_equal(f_xx, 0.41789957732890953, decimal=7)
                npt.assert_almost_equal(f_yy, 0.14047593655054141, decimal=7)
                npt.assert_almost_equal(f_xy, -0.18560737698052343, decimal=7)
            else:
                npt.assert_almost_equal(f_xx, 0, decimal=7)
                npt.assert_almost_equal(f_yy, 0, decimal=7)
                npt.assert_almost_equal(f_xy, 0, decimal=7)

            x = 1.
            y = 2.
            phi_E = 1.
            gamma = 1.9
            q = 0.9
            phi_G = 1.
            a = np.zeros_like(x)
            f_xx, f_yy,f_xy = self.SPEMD.hessian(x, y, phi_E, gamma, q, phi_G)
            if fastell4py_bool:
                npt.assert_almost_equal(f_xx, 0.41789957732890953, decimal=7)
                npt.assert_almost_equal(f_yy, 0.14047593655054141, decimal=7)
                npt.assert_almost_equal(f_xy, -0.18560737698052343, decimal=7)
            else:
                npt.assert_almost_equal(f_xx, 0, decimal=7)
                npt.assert_almost_equal(f_yy, 0, decimal=7)
                npt.assert_almost_equal(f_xy, 0, decimal=7)
            a += f_xx
            x = np.array([1,3,4])
            y = np.array([2,1,1])
            values = self.SPEMD.hessian(x, y, phi_E, gamma, q, phi_G)
            print(values, 'values')
            if fastell4py_bool:
                npt.assert_almost_equal(values[0][0], 0.41789957732890953, decimal=7)
                npt.assert_almost_equal(values[1][0], 0.14047593655054141, decimal=7)
                npt.assert_almost_equal(values[2][0], -0.18560737698052343, decimal=7)
                npt.assert_almost_equal(values[0][1], 0.068359818958208918, decimal=7)
                npt.assert_almost_equal(values[1][1], 0.32494089371516482, decimal=7)
                npt.assert_almost_equal(values[2][1], -0.097845438684594374, decimal=7)
            else:
                npt.assert_almost_equal(values[0][0], 0, decimal=7)

        def test_spep_spemd(self):
            x = np.array([1])
            y = np.array([0])
            phi_E = 1.
            gamma = 2.
            q = 1.
            phi_G = 1.
            f_x, f_y = self.SPEMD.derivatives(x, y, phi_E, gamma, q, phi_G)
            f_x_spep, f_y_spep = self.SPEP.derivatives(x, y, phi_E, gamma, q, phi_G)
            if fastell4py_bool:
                npt.assert_almost_equal(f_x[0], f_x_spep[0], decimal=2)
            else:
                pass

            theta_E = 2.
            gamma = 2.
            q = 1.
            phi_G = 1.
            f_x, f_y = self.SPEMD.derivatives(x, y, theta_E, gamma, q, phi_G)
            f_x_spep, f_y_spep = self.SPEP.derivatives(x, y, theta_E, gamma, q, phi_G)
            if fastell4py_bool:
                npt.assert_almost_equal(f_x[0], f_x_spep[0], decimal=2)
            else:
                pass

            theta_E = 2.
            gamma = 1.7
            q = 1.
            phi_G = 1.
            f_x, f_y = self.SPEMD.derivatives(x, y, theta_E, gamma, q, phi_G)
            f_x_spep, f_y_spep = self.SPEP.derivatives(x, y, theta_E, gamma, q, phi_G)
            if fastell4py_bool:
                npt.assert_almost_equal(f_x[0], f_x_spep[0], decimal=4)