Beispiel #1
0
def test_radial_profile():
    from lenstronomy.LightModel.Profiles.gaussian import Gaussian
    gauss = Gaussian()
    x, y = util.make_grid(11, 1)
    flux = gauss.function(x, y, sigma=10, amp=1)
    data = util.array2image(flux)
    profile_r = image_util.radial_profile(data, center=[5, 5])
    profile_r_true = gauss.function(np.linspace(0, stop=7, num=8), 0, sigma=10, amp=1)
    npt.assert_almost_equal(profile_r, profile_r_true, decimal=3)
Beispiel #2
0
def mge_kernel(kernel, order=5):
    """
    azimutal Multi-Gaussian expansion of a pixelized kernel

    :param kernel: 2d numpy array
    :return:
    """
    # radial average
    n = len(kernel)
    center = (n - 1) / 2.
    psf_r = image_util.radial_profile(kernel, center=[center, center])
    # MGE of radial average
    n_r = len(psf_r)
    r_array = np.linspace(start=0., stop=n_r - 1, num=n_r)
    amps, sigmas, norm = mge.mge_1d(r_array, psf_r, N=order, linspace=True)
    return amps, sigmas, norm
Beispiel #3
0
def fwhm_kernel(kernel):
    """

    :param kernel:
    :return:
    """
    n = len(kernel)
    center = (n - 1) / 2.
    I_r = image_util.radial_profile(kernel, center=[center, center])
    if n % 2 == 0:
        raise ValueError('only works with odd number of pixels in kernel!')
    max_flux = kernel[int((n-1)/2), int((n-1)/2)]
    I_2 = max_flux / 2.
    r = np.linspace(0, (n - 1) / 2, int((n + 1) / 2)) + 0.33
    for i in range(1, len(I_r)):
        if I_r[i] < I_2:
            fwhm_2 = (I_2 - I_r[i - 1]) / (I_r[i] - I_r[i - 1]) + r[i - 1]
            return fwhm_2 * 2
    raise ValueError('The kernel did not drop to half the max value - fwhm not determined!')