def keys(self, extra=True): res = list(self.entity.array.dtype.names) res.extend(sorted(self.entity.temp_variables.keys())) if extra: res.extend(sorted(self.extra.keys())) # in theory, this should not be needed because we present defining a function argument with the same # name than an entity field assert list(unique(res)) == res return res
def _modified_fields(self): fnames = self.predictors if not fnames: return [] fnames.insert(0, 'id') temp = self.entity.temp_variables array = self.entity.array length = len(array) fields = [(k, temp[k] if k in temp else array[k]) for k in utils.unique(fnames)] return [(k, v) for k, v in fields if isinstance(v, np.ndarray) and v.shape == (length, )]
def load_ndarray(fpath, celltype=None): print(" - reading", fpath) # FIXME: implement celltype a = la.read_csv(fpath, dialect='liam2') # print(a.info) return a with open(fpath, "rb") as f: reader = csv.reader(f) line_stream = skip_comment_cells(strip_rows(reader)) header = line_stream.next() str_table = [] for line in line_stream: if any(value == '' for value in line): raise Exception("empty cell found in %s" % fpath) str_table.append(line) ndim = len(header) # handle last dimension header (horizontal values) last_d_header = str_table.pop(0) # auto-detect type of values for the last d and convert them last_d_pvalues = convert_1darray(last_d_header) unique_last_d, dupe_last_d = unique_duplicate(last_d_pvalues) if dupe_last_d: print(("Duplicate column header value(s) (for '%s') in '%s': %s" % (header[-1], fpath, ", ".join(str(v) for v in dupe_last_d)))) raise Exception("bad data in '%s': found %d " "duplicate column header value(s)" % (fpath, len(dupe_last_d))) # handle other dimensions header # strip the ndim-1 first columns headers = [[line.pop(0) for line in str_table] for _ in range(ndim - 1)] headers = [convert_1darray(pvalues_str) for pvalues_str in headers] if ndim > 1: # having duplicate values is normal when there are more than 2 # dimensions but we need to test whether there are duplicates of # combinations. dupe_combos = list(duplicates(zip(*headers))) if dupe_combos: print(("Duplicate row header value(s) in '%s':" % fpath)) print((PrettyTable(dupe_combos))) raise Exception("bad alignment data in '%s': found %d " "duplicate row header value(s)" % (fpath, len(dupe_combos))) possible_values = [np.array(list(unique(pvalues))) for pvalues in headers] possible_values.append(np.array(unique_last_d)) shape = tuple(len(values) for values in possible_values) num_possible_values = prod(shape) # transform the 2d table into a 1d list str_table = list(chain.from_iterable(str_table)) if len(str_table) != num_possible_values: raise Exception("incoherent data in '%s': %d data cells " "found while it should be %d based on the number " "of possible values in headers (%s)" % (fpath, len(str_table), num_possible_values, ' * '.join(str(len(values)) for values in possible_values))) # TODO: compare time with numpy built-in conversion: # if dtype is None, numpy tries to detect the best type itself # which it does a good job of if the values are already numeric values # if dtype is provided, numpy does a good job to convert from string # values. if celltype is None: celltype = detect_column_type(str_table) data = convert_1darray(str_table, celltype) array = np.array(data, dtype=celltype) return la.LArray(array.reshape(shape), header, possible_values)