def update_asgs(asgs, cluster_name):
    run_mode = app_config['RUN_MODE']

    asg_outdated_instance_dict = plan_asgs(asgs)

    asg_original_state_dict = {}

    if run_mode == 2:
        # Scale up all the ASGs with outdated nodes (by the number of outdated nodes)
        for asg_name, asg_tuple in asg_outdated_instance_dict.items():
            outdated_instances, asg = asg_tuple
            outdated_instance_count = len(outdated_instances)
            logger.info(
                f'Setting the scale of ASG {asg_name} based on {outdated_instance_count} outdated instances.'
            )
            asg_original_state_dict[asg_name] = scale_up_asg(
                cluster_name, asg, outdated_instance_count)

    k8s_nodes = get_k8s_nodes()
    if (run_mode == 2) or (run_mode == 3):
        for asg_name, asg_tuple in asg_outdated_instance_dict.items():
            outdated_instances, asg = asg_tuple
            for outdated in outdated_instances:
                node_name = ""
                try:
                    # get the k8s node name instead of instance id
                    node_name = get_node_by_instance_id(
                        k8s_nodes, outdated['InstanceId'])
                    cordon_node(node_name)
                except Exception as cordon_exception:
                    logger.error(
                        f"Encountered an error when cordoning node {node_name}"
                    )
                    logger.error(cordon_exception)
                    exit(1)

    # Drain, Delete and Terminate the outdated nodes and return the ASGs back to their original state
    for asg_name, asg_tuple in asg_outdated_instance_dict.items():
        outdated_instances, asg = asg_tuple
        outdated_instance_count = len(outdated_instances)

        if (run_mode == 1) or (run_mode == 3):
            logger.info(
                f'Setting the scale of ASG {asg_name} based on {outdated_instance_count} outdated instances.'
            )
            asg_original_state_dict[asg_name] = scale_up_asg(
                cluster_name, asg, outdated_instance_count)

        if run_mode == 1:
            for outdated in outdated_instances:
                node_name = ""
                try:
                    # get the k8s node name instead of instance id
                    node_name = get_node_by_instance_id(
                        k8s_nodes, outdated['InstanceId'])
                    cordon_node(node_name)
                except Exception as cordon_exception:
                    logger.error(
                        f"Encountered an error when cordoning node {node_name}"
                    )
                    logger.error(cordon_exception)
                    exit(1)

        if len(outdated_instances) != 0:
            # pause aws autoscaling so new instances dont try
            # to spawn while instances are being terminated
            modify_aws_autoscaling(asg_name, "suspend")

        # start draining and terminating
        for outdated in outdated_instances:
            # catch any failures so we can resume aws autoscaling
            try:
                # get the k8s node name instead of instance id
                node_name = get_node_by_instance_id(k8s_nodes,
                                                    outdated['InstanceId'])
                drain_node(node_name)
                delete_node(node_name)
                terminate_instance(outdated['InstanceId'])
                if not instance_terminated(outdated['InstanceId']):
                    raise Exception(
                        'Instance is failing to terminate. Cancelling out.')
                detach_instance(outdated['InstanceId'], asg_name)
                if app_config[
                        'ASG_WAIT_FOR_DETACHMENT'] and not instance_detached(
                            outdated['InstanceId']):
                    raise Exception(
                        'Instance is failing to detach from ASG. Cancelling out.'
                    )

                between_nodes_wait = app_config['BETWEEN_NODES_WAIT']
                if between_nodes_wait != 0:
                    logger.info(
                        f'Waiting for {between_nodes_wait} seconds before continuing...'
                    )
                    time.sleep(between_nodes_wait)
            except Exception as drain_exception:
                logger.info(drain_exception)
                raise RollingUpdateException("Rolling update on ASG failed",
                                             asg_name)

        # scaling cluster back down
        logger.info("Scaling asg back down to original state")
        asg_desired_capacity, asg_orig_desired_capacity, asg_orig_max_capacity = asg_original_state_dict[
            asg_name]
        scale_asg(asg_name, asg_desired_capacity, asg_orig_desired_capacity,
                  asg_orig_max_capacity)
        # resume aws autoscaling
        modify_aws_autoscaling(asg_name, "resume")
        # remove aws tag
        delete_asg_tags(asg_name, app_config["ASG_DESIRED_STATE_TAG"])
        delete_asg_tags(asg_name, app_config["ASG_ORIG_CAPACITY_TAG"])
        delete_asg_tags(asg_name, app_config["ASG_ORIG_MAX_CAPACITY_TAG"])
        logger.info(f'*** Rolling update of asg {asg_name} is complete! ***')
    logger.info('All asgs processed')
Beispiel #2
0
 def test_instance_terminated_fail(self):
     self.assertFalse(instance_terminated(self.instance_id, 2, 1))
def update_asgs(asgs, cluster_name):
    for asg in asgs:
        logger.info('\n')
        logger.info(
            '****  Starting rolling update for autoscaling group {}  ****'.
            format(asg['AutoScalingGroupName']))
        asg_name = asg['AutoScalingGroupName']
        asg_lc_name = asg['LaunchConfigurationName']
        asg_old_max_size = asg['MaxSize']
        instances = asg['Instances']
        asg_old_desired_capacity = asg['DesiredCapacity']
        asg_tags = asg['Tags']
        # return a list of outdated instances
        outdated_instances = []
        for instance in instances:
            if instance_outdated(instance, asg_lc_name):
                outdated_instances.append(instance)
        logger.info('Found {} outdated instances'.format(
            len(outdated_instances)))
        # skip to next asg if there are no outdated instances
        if len(outdated_instances) == 0:
            continue
        # remove any stale suspentions from asg that may be present
        modify_aws_autoscaling(asg_name, "resume")
        # check for previous run tag on asg
        asg_tag_desired_capacity = get_asg_tag(
            asg_tags, app_config["ASG_DESIRED_STATE_TAG"])
        if asg_tag_desired_capacity.get('Value'):
            logger.info(
                'Found previous desired capacity value tag set on asg from a previous run. Value: {}'
                .format(asg_tag_desired_capacity.get('Value')))
            logger.info('Maintaining previous capacity to not overscale')
            asg_new_desired_capacity = int(
                asg_tag_desired_capacity.get('Value'))
            asg_tag_original_capacity = get_asg_tag(
                asg_tags, app_config["ASG_ORIG_CAPACITY_TAG"])
            logger.info(
                'Maintaining original old capacity from a previous run so we can scale back down to original size of: {}'
                .format(asg_tag_original_capacity.get('Value')))
            asg_old_desired_capacity = int(
                asg_tag_original_capacity.get('Value'))
        else:
            logger.info('No previous capacity value tag set on asg')
            # save original capacity to asg tags
            logger.info('Setting original capacity on asg')
            save_asg_tags(asg_name, app_config["ASG_ORIG_CAPACITY_TAG"],
                          asg_old_desired_capacity)
            asg_new_desired_capacity = asg_old_desired_capacity + len(
                outdated_instances)
            # save new capacity to asg tags
            save_asg_tags(asg_name, app_config["ASG_DESIRED_STATE_TAG"],
                          asg_new_desired_capacity)
        # only change the max size if the new capacity is bigger than current max
        if asg_new_desired_capacity > asg_old_max_size:
            asg_new_max_size = asg_new_desired_capacity
        else:
            # dont change the size
            asg_new_max_size = asg_old_max_size
        # get number of k8s nodes before we scale used later
        # to determine how many new nodes have been created
        k8s_nodes = get_k8s_nodes()
        # now scale up
        scale_asg(asg_name, asg_old_desired_capacity, asg_new_desired_capacity,
                  asg_new_max_size)
        logger.info(
            'Waiting for {} seconds for asg {} to scale before validating cluster health...'
            .format(app_config['CLUSTER_HEALTH_WAIT'], asg_name))
        time.sleep(app_config['CLUSTER_HEALTH_WAIT'])
        # check how many instances are running
        asg_instance_count = count_all_cluster_instances(cluster_name)
        # check cluster health before doing anything
        if validate_cluster_health(asg_name, asg_new_desired_capacity,
                                   asg_instance_count):
            # pause aws autoscaling so new instances dont try
            # to spawn while instances are being terminated
            modify_aws_autoscaling(asg_name, "suspend")
            # start draining and terminating
            for outdated in outdated_instances:
                # catch any failures so we can resume aws autoscaling
                try:
                    # get the k8s node name instead of instance id
                    node_name = get_node_by_instance_id(
                        k8s_nodes, outdated['InstanceId'])
                    drain_node(node_name)
                    delete_node(node_name)
                    terminate_instance(outdated['InstanceId'])
                    if not instance_terminated(outdated['InstanceId']):
                        raise Exception(
                            'Instance is failing to terminate. Cancelling out.'
                        )
                    detach_instance(outdated['InstanceId'], asg_name)
                    if not instance_detached(outdated['InstanceId']):
                        raise Exception(
                            'Instance is failing to detach from ASG. Cancelling out.'
                        )
                except Exception as e:
                    logger.info(e)
                    raise RollingUpdateException(
                        "Rolling update on asg failed", asg_name)

            # resume aws autoscaling
            modify_aws_autoscaling(asg_name, "resume")
            # remove aws tag
            delete_asg_tags(asg_name, app_config["ASG_DESIRED_STATE_TAG"])
            delete_asg_tags(asg_name, app_config["ASG_ORIG_CAPACITY_TAG"])
            logger.info('*** Rolling update of asg {} is complete! ***'.format(
                asg_name))
        else:
            logger.info('Exiting since asg healthcheck failed')
            raise Exception('Asg healthcheck failed')
    logger.info('All asgs processed')
Beispiel #4
0
 def test_instance_terminated(self):
     with patch('lib.aws.ec2_client.describe_instances'
                ) as describe_instances_mock:
         describe_instances_mock.return_value = self.aws_response_mock_terminated
         self.assertTrue(instance_terminated(self.instance_id, 2, 1))