Beispiel #1
0
def test_pre_net(net, args):
    net.eval()
    time1 = time.time()
    res = {}
    rlp_labels_ours  = []
    tuple_confs_cell = []
    sub_bboxes_cell  = []
    obj_bboxes_cell  = []
    test_data_layer = VrdDataLayer(args.ds_name, 'test', model_type = args.model_type)    
    # for step in range(1000):   
    for step in range(test_data_layer._num_instance):    
        test_data = test_data_layer.forward()
        if(test_data is None):
            rlp_labels_ours.append(None)
            tuple_confs_cell.append(None)
            sub_bboxes_cell.append(None)
            obj_bboxes_cell.append(None)
            continue
        image_blob, boxes, rel_boxes, SpatialFea, classes, ix1, ix2, ori_bboxes = test_data
        rlp_labels_im  = np.zeros((100, 3), dtype = np.float)
        tuple_confs_im = []
        sub_bboxes_im  = np.zeros((100, 4), dtype = np.float)
        obj_bboxes_im  = np.zeros((100, 4), dtype = np.float)
        obj_score, rel_score = net(image_blob, boxes, rel_boxes, SpatialFea, classes, ix1, ix2, args)
        rel_prob = rel_score.data.cpu().numpy()
        rel_res = np.dstack(np.unravel_index(np.argsort(-rel_prob.ravel()), rel_prob.shape))[0][:100]
        for ii in range(rel_res.shape[0]):            
            rel = rel_res[ii, 1]
            tuple_idx = rel_res[ii, 0]
            conf = rel_prob[tuple_idx, rel]
            sub_bboxes_im[ii] = ori_bboxes[ix1[tuple_idx]]
            obj_bboxes_im[ii] = ori_bboxes[ix2[tuple_idx]]
            rlp_labels_im[ii] = [classes[ix1[tuple_idx]], rel, classes[ix2[tuple_idx]]]
            tuple_confs_im.append(conf)
        if(args.ds_name =='vrd'):
            rlp_labels_im += 1
        tuple_confs_im = np.array(tuple_confs_im)
        rlp_labels_ours.append(rlp_labels_im)
        tuple_confs_cell.append(tuple_confs_im)
        sub_bboxes_cell.append(sub_bboxes_im)
        obj_bboxes_cell.append(obj_bboxes_im)
    res['rlp_labels_ours'] = rlp_labels_ours
    res['rlp_confs_ours'] = tuple_confs_cell 
    res['sub_bboxes_ours'] = sub_bboxes_cell 
    res['obj_bboxes_ours'] = obj_bboxes_cell
    rec_50  = eval_reall_at_N(args.ds_name, 50, res, use_zero_shot = False)
    rec_50_zs  = eval_reall_at_N(args.ds_name, 50, res, use_zero_shot = True)
    rec_100 = eval_reall_at_N(args.ds_name, 100, res, use_zero_shot = False)
    rec_100_zs = eval_reall_at_N(args.ds_name, 100, res, use_zero_shot = True)
    print 'CLS TEST r50:%f, r50_zs:%f, r100:%f, r100_zs:%f'% (rec_50, rec_50_zs, rec_100, rec_100_zs)
    time2 = time.time()            
    print "TEST Time:%s" % (time.strftime('%H:%M:%S', time.gmtime(int(time2 - time1))))
    return rec_50, rec_50_zs, rec_100, rec_100_zs
Beispiel #2
0
        sys.exit(1)

    args = parser.parse_args()
    return args


if __name__ == '__main__':
    global args
    args = parse_args()
    print args
    # hyper-parameters
    # ------------
    args.proposal = '../data/vrd/proposal.pkl'
    # load data
    train_data_layer = VrdDataLayer(args.ds_name,
                                    'train',
                                    model_type=args.model_type)
    args.num_relations = train_data_layer._num_relations
    args.num_classes = train_data_layer._num_classes
    # load net
    net = Vrd_Model(args)
    network.weights_normal_init(net, dev=0.01)
    pretrained_model = '../data/VGG_imagenet.npy'
    network.load_pretrained_npy(net, pretrained_model)
    # Initial object embedding with word2vec
    #with open('../data/vrd/params_emb.pkl') as f:
    #    emb_init = cPickle.load(f)
    #net.state_dict()['emb.weight'][1::].copy_(torch.from_numpy(emb_init))
    net.cuda()
    params = list(net.parameters())
    momentum = 0.9
Beispiel #3
0
def test_rel_net_hier(net, args):
    net.eval()
    time1 = time.time()
    pos_num = 0.0
    loc_num = 0.0
    gt_num = 0.0

    # 加载测试集GT
    with open('../data/%s/test.pkl' % args.ds_name, 'rb') as fid:
        anno = cPickle.load(fid)

    # VRD格式输出
    res = {}
    rlp_labels_ours = []
    tuple_confs_cell = []
    sub_bboxes_cell = []
    obj_bboxes_cell = []
    test_data_layer = VrdDataLayer(args.ds_name,
                                   'test',
                                   model_type=args.model_type,
                                   proposals_path=args.proposal)
    predict = []

    N_rlt_pred = 0

    # for step in range(1000):
    for step in range(test_data_layer._num_instance):
        print(step)
        test_data = test_data_layer.forward()
        if (test_data is None):
            rlp_labels_ours.append(None)
            tuple_confs_cell.append(None)
            sub_bboxes_cell.append(None)
            obj_bboxes_cell.append(None)
            predict.append(None)
            continue

        # img(resized), det box(resized), union box(resized)
        # 空间特征,detection classes, sbj-det-inds, obj-det,inds
        # det box(org), det confs, 先验
        image_blob, boxes, rel_boxes, SpatialFea, classes, ix1, ix2, ori_bboxes, pred_confs, rel_so_prior = test_data
        N_rlt_pred += ix1.shape[0]

        # 测试
        # 物体检测得分,predicate得分
        obj_score, rel_score = net(image_blob, boxes, rel_boxes, SpatialFea,
                                   classes, ix1, ix2, args)

        # 物体检测结果和得分,这里没有用
        _, obj_pred = obj_score[:, 1::].data.topk(1, 1, True, True)

        # 物体检测得分归一化
        obj_score = F.softmax(obj_score)[:, 1::].data.cpu().numpy()

        # 加载当前图像的object GT
        anno_img = anno[step]
        gt_boxes = anno_img['boxes'].astype(np.float32)
        gt_cls = np.array(anno_img['classes']).astype(np.float32)

        # eval物体检测部分
        # pos是类别和box都正确,loc是仅box正确
        pos_num_img, loc_num_img = eval_obj_img(gt_boxes,
                                                gt_cls,
                                                ori_bboxes,
                                                obj_pred.cpu().numpy(),
                                                gt_thr=0.5)
        # pos_num_img, loc_num_img = eval_obj_img(gt_boxes, gt_cls, ori_bboxes, classes, gt_thr=0.5)

        gt_num += gt_boxes.shape[0]
        pos_num += pos_num_img
        loc_num += loc_num_img
        rel_prob = rel_score.data.cpu().numpy()

        # predicate得分,加上先验得分
        # num_relations是predicate类别数
        # TODO:先验得分怎么算
        rel_prob += np.log(0.5 * (rel_so_prior + 1.0 / args.num_relations))

        # ---- k=1 ----
        # rlp_labels_im  = np.zeros((rel_prob.shape[0], 3), dtype = np.float)
        # tuple_confs_im = []
        # sub_bboxes_im  = np.zeros((rel_prob.shape[0], 4), dtype = np.float)
        # obj_bboxes_im  = np.zeros((rel_prob.shape[0], 4), dtype = np.float)
        # n_idx = 0
        # for tuple_idx in range(rel_prob.shape[0]):
        #     sub = classes[ix1[tuple_idx]]
        #     obj = classes[ix2[tuple_idx]]
        #
        #
        #     rel_p = rel_prob[tuple_idx]
        #     rel = np.argmax(rel_p)
        #
        #     if (pred_confs.ndim == 1):
        #         conf = np.log(pred_confs[ix1[tuple_idx]]) + np.log(pred_confs[ix2[tuple_idx]]) + rel_prob[tuple_idx, rel]
        #     else:
        #         conf = np.log(pred_confs[ix1[tuple_idx], 0]) + np.log(pred_confs[ix2[tuple_idx], 0]) + rel_prob[tuple_idx, rel]
        #     sub_bboxes_im[n_idx] = ori_bboxes[ix1[tuple_idx]]
        #     obj_bboxes_im[n_idx] = ori_bboxes[ix2[tuple_idx]]
        #     rlp_labels_im[n_idx] = [sub, rel, obj]
        #     tuple_confs_im.append(conf)
        #     n_idx += 1
        # ---- k=1 ----

        # ---- k=70 ----
        # 预测relationship的三元组,n*(n-1)*70组
        rlp_labels_im = np.zeros((rel_prob.shape[0] * rel_prob.shape[1], 3),
                                 dtype=np.float)
        tuple_confs_im = []
        sub_bboxes_im = np.zeros((rel_prob.shape[0] * rel_prob.shape[1], 4),
                                 dtype=np.float)
        obj_bboxes_im = np.zeros((rel_prob.shape[0] * rel_prob.shape[1], 4),
                                 dtype=np.float)
        n_idx = 0

        for tuple_idx in range(rel_prob.shape[0]):
            sub = classes[ix1[tuple_idx]]
            obj = classes[ix2[tuple_idx]]
            for rel in range(rel_prob.shape[1]):
                if (args.use_obj_prior):
                    # 使用物体得分
                    # relationship 得分为sbj,obj,pre得分之和,即均值
                    if (pred_confs.ndim == 1):
                        conf = np.log(pred_confs[ix1[tuple_idx]]) + np.log(
                            pred_confs[ix2[tuple_idx]]) + rel_prob[tuple_idx,
                                                                   rel]
                    else:
                        conf = np.log(pred_confs[ix1[tuple_idx], 0]) + np.log(
                            pred_confs[ix2[tuple_idx],
                                       0]) + rel_prob[tuple_idx, rel]
                else:
                    # 不使用物体得分
                    # relationship得分就是predicate得分
                    conf = rel_prob[tuple_idx, rel]
                sub_bboxes_im[n_idx] = ori_bboxes[ix1[tuple_idx]]
                obj_bboxes_im[n_idx] = ori_bboxes[ix2[tuple_idx]]
                rlp_labels_im[n_idx] = [sub, rel, obj]
                tuple_confs_im.append(conf)
                n_idx += 1
        # ---- k=70 ----

        if (args.ds_name == 'vrd'):
            # class 1 based
            rlp_labels_im += 1
        tuple_confs_im = np.array(tuple_confs_im)
        idx_order = tuple_confs_im.argsort()[::-1][:100]
        rlp_labels_im = rlp_labels_im[idx_order, :]
        tuple_confs_im = tuple_confs_im[idx_order]
        sub_bboxes_im = sub_bboxes_im[idx_order, :]
        obj_bboxes_im = obj_bboxes_im[idx_order, :]
        rlp_labels_ours.append(rlp_labels_im)
        tuple_confs_cell.append(tuple_confs_im)
        sub_bboxes_cell.append(sub_bboxes_im)
        obj_bboxes_cell.append(obj_bboxes_im)
    res['rlp_labels_ours'] = rlp_labels_ours
    res['rlp_confs_ours'] = tuple_confs_cell
    res['sub_bboxes_ours'] = sub_bboxes_cell
    res['obj_bboxes_ours'] = obj_bboxes_cell
    rec_50 = eval_reall_at_N_hier(args.ds_name, 50, res, use_zero_shot=False)
    rec_50_zs = eval_reall_at_N_hier(args.ds_name, 50, res, use_zero_shot=True)
    rec_100 = eval_reall_at_N_hier(args.ds_name, 100, res, use_zero_shot=False)
    rec_100_zs = eval_reall_at_N_hier(args.ds_name,
                                      100,
                                      res,
                                      use_zero_shot=True)
    print 'CLS OBJ TEST POS:%f, LOC:%f, GT:%f, Precision:%f, Recall:%f' % (
        pos_num, loc_num, gt_num, pos_num /
        (pos_num + loc_num), pos_num / gt_num)
    print 'CLS REL TEST r50:%f, r50_zs:%f, r100:%f, r100_zs:%f' % (
        rec_50, rec_50_zs, rec_100, rec_100_zs)
    time2 = time.time()
    print "TEST Time:%s" % (time.strftime('%H:%M:%S',
                                          time.gmtime(int(time2 - time1))))
    print('pred rlt num: %d' % N_rlt_pred)
    return rec_50, rec_50_zs, rec_100, rec_100_zs
Beispiel #4
0
def test_pre_net(net, args):
    net.eval()
    time1 = time.time()
    res = {}
    rlp_labels_ours = []
    tuple_confs_cell = []
    sub_bboxes_cell = []
    obj_bboxes_cell = []
    test_data_layer = VrdDataLayer(args.ds_name,
                                   'test',
                                   model_type=args.model_type)
    # for step in range(1000):
    for step in range(test_data_layer._num_instance):
        if step % 100 == 0:
            print(step)
        test_data = test_data_layer.forward()
        if (test_data is None):
            rlp_labels_ours.append(None)
            tuple_confs_cell.append(None)
            sub_bboxes_cell.append(None)
            obj_bboxes_cell.append(None)
            continue

        # img(resized), detection(resized), union box(resized)
        # 空间特征,detection classes, sbj-det-inds, obj-det,inds, detection(org)
        image_blob, boxes, rel_boxes, SpatialFea, classes, ix1, ix2, ori_bboxes = test_data

        # 用于保存三元组
        rlp_labels_im = np.zeros((100, 3), dtype=np.float)
        # 用于保存三元组conf
        tuple_confs_im = []

        sub_bboxes_im = np.zeros((100, 4), dtype=np.float)
        obj_bboxes_im = np.zeros((100, 4), dtype=np.float)

        # 预测
        # Attention: obj_scores没有使用
        obj_score, rel_score = net(image_blob, boxes, rel_boxes, SpatialFea,
                                   classes, ix1, ix2, args)
        rel_prob = rel_score.data.cpu().numpy()

        # ---- k=1 ----
        # rel_res = []
        # for tuple_idx in range(rel_prob.shape[0]):
        #     probs = rel_prob[tuple_idx]
        #     rel = np.argmax(probs)
        #     rel_res.append([tuple_idx, rel])
        # rel_res = np.array(rel_res)

        # rlp_labels_im = rlp_labels_im[:rel_res.shape[0], :]
        # sub_bboxes_im = sub_bboxes_im[:rel_res.shape[0], :]
        # obj_bboxes_im = obj_bboxes_im[:rel_res.shape[0], :]
        # ---- k=1 ----

        # aaa = np.argsort(-rel_prob.ravel())
        # bbb = np.unravel_index(aaa, rel_prob.shape)
        # ccc = np.dstack(bbb)
        # ddd = ccc[0]
        # rel_res = ddd[:100]

        # 这一句是填充50/100的
        rel_res = np.dstack(
            np.unravel_index(np.argsort(-rel_prob.ravel()),
                             rel_prob.shape))[0][:100]
        for ii in range(rel_res.shape[0]):
            rel = rel_res[ii, 1]
            tuple_idx = rel_res[ii, 0]
            conf = rel_prob[tuple_idx, rel]
            sub_bboxes_im[ii] = ori_bboxes[ix1[tuple_idx]]
            obj_bboxes_im[ii] = ori_bboxes[ix2[tuple_idx]]
            rlp_labels_im[ii] = [
                classes[ix1[tuple_idx]], rel, classes[ix2[tuple_idx]]
            ]
            tuple_confs_im.append(conf)
        if (args.ds_name == 'vrd'):
            rlp_labels_im += 1
        tuple_confs_im = np.array(tuple_confs_im)
        rlp_labels_ours.append(rlp_labels_im)
        tuple_confs_cell.append(tuple_confs_im)
        sub_bboxes_cell.append(sub_bboxes_im)
        obj_bboxes_cell.append(obj_bboxes_im)
    res['rlp_labels_ours'] = rlp_labels_ours
    res['rlp_confs_ours'] = tuple_confs_cell
    res['sub_bboxes_ours'] = sub_bboxes_cell
    res['obj_bboxes_ours'] = obj_bboxes_cell

    with open('test_pre_%s.bin' % args.ds_name, 'wb') as f:
        cPickle.dump(res, f)

    rec_50 = eval_reall_at_N(args.ds_name, 50, res, use_zero_shot=False)
    rec_50_zs = eval_reall_at_N(args.ds_name, 50, res, use_zero_shot=True)
    rec_100 = eval_reall_at_N(args.ds_name, 100, res, use_zero_shot=False)
    rec_100_zs = eval_reall_at_N(args.ds_name, 100, res, use_zero_shot=True)
    print 'CLS TEST r50:%f, r50_zs:%f, r100:%f, r100_zs:%f' % (
        rec_50, rec_50_zs, rec_100, rec_100_zs)
    time2 = time.time()
    print "TEST Time:%s" % (time.strftime('%H:%M:%S',
                                          time.gmtime(int(time2 - time1))))
    return rec_50, rec_50_zs, rec_100, rec_100_zs
Beispiel #5
0
    args = parser.parse_args()
    return args


if __name__ == '__main__':
    global args
    args = parse_args()
    args.proposal = '../data/vrd/proposal.pkl'
    args.resume = '../models/%s/epoch_%d_checkpoint.pth.tar' % (
        args.name, args.epochs - 1)
    print args
    print 'Evaluating...'
    # Data
    test_data_layer = VrdDataLayer(args.ds_name,
                                   'test',
                                   model_type=args.model_type)
    args.num_relations = test_data_layer._num_relations
    args.num_classes = test_data_layer._num_classes
    # Model
    net = Vrd_Model(args)
    net.cuda()
    if osp.isfile(args.resume):
        print("=> loading model '{}'".format(args.resume))
        checkpoint = torch.load(args.resume)
        net.load_state_dict(checkpoint['state_dict'])
        headers = [
            "Epoch", "Pre R@50", "ZS", "R@100", "ZS", "Rel R@50", "ZS",
            "R@100", "ZS"
        ]
        res = []
def test_rel_res(net, args):
    net.eval()
    time1 = time.time()
    pos_num = 0.0
    loc_num = 0.0
    gt_num = 0.0
    with open('../data/%s/test.pkl' % args.ds_name, 'rb') as fid:
        anno = pickle.load(fid)
    res = {}
    rlp_labels_ours = []
    tuple_confs_cell = []
    sub_bboxes_cell = []
    obj_bboxes_cell = []
    test_data_layer = VrdDataLayer(args.ds_name,
                                   'test',
                                   model_type=args.model_type,
                                   proposals_path=args.proposal)
    predict = []
    # for step in range(1000):
    for step in range(test_data_layer._num_instance):
        test_data = test_data_layer.forward()
        if (test_data is None):
            rlp_labels_ours.append(None)
            tuple_confs_cell.append(None)
            sub_bboxes_cell.append(None)
            obj_bboxes_cell.append(None)
            predict.append(None)
            continue
        image_blob, boxes, rel_boxes, SpatialFea, classes, ix1, ix2, class_embed, ori_bboxes, pred_confs, rel_so_prior = test_data
        obj_score, rel_score = net(image_blob, boxes, rel_boxes, SpatialFea,
                                   classes, ix1, ix2, class_embed, args)
        _, obj_pred = obj_score[:, 1::].data.topk(1, 1, True, True)
        obj_score = F.softmax(obj_score)[:, 1::].data.cpu().numpy()

        anno_img = anno[step]
        gt_boxes = anno_img['boxes'].astype(np.float32)
        gt_cls = np.array(anno_img['classes']).astype(np.float32)
        pos_num_img, loc_num_img = eval_obj_img(gt_boxes,
                                                gt_cls,
                                                ori_bboxes,
                                                obj_pred.cpu().numpy(),
                                                gt_thr=0.5)
        gt_num += gt_boxes.shape[0]
        pos_num += pos_num_img
        loc_num += loc_num_img
        rel_prob = rel_score.data.cpu().numpy()
        rel_prob += np.log(0.5 * (rel_so_prior + 1.0 / args.num_relations))
        rlp_labels_im = np.zeros((rel_prob.shape[0] * rel_prob.shape[1], 3),
                                 dtype=np.float)
        tuple_confs_im = []
        sub_bboxes_im = np.zeros((rel_prob.shape[0] * rel_prob.shape[1], 4),
                                 dtype=np.float)
        obj_bboxes_im = np.zeros((rel_prob.shape[0] * rel_prob.shape[1], 4),
                                 dtype=np.float)
        n_idx = 0
        for tuple_idx in range(rel_prob.shape[0]):
            sub = classes[ix1[tuple_idx]]
            obj = classes[ix2[tuple_idx]]
            for rel in range(rel_prob.shape[1]):
                if (args.use_obj_prior):
                    if (pred_confs.ndim == 1):
                        conf = np.log(pred_confs[ix1[tuple_idx]]) + np.log(
                            pred_confs[ix2[tuple_idx]]) + rel_prob[tuple_idx,
                                                                   rel]
                    else:
                        conf = np.log(pred_confs[ix1[tuple_idx], 0]) + np.log(
                            pred_confs[ix2[tuple_idx],
                                       0]) + rel_prob[tuple_idx, rel]
                else:
                    conf = rel_prob[tuple_idx, rel]
                sub_bboxes_im[n_idx] = ori_bboxes[ix1[tuple_idx]]
                obj_bboxes_im[n_idx] = ori_bboxes[ix2[tuple_idx]]
                rlp_labels_im[n_idx] = [sub, rel, obj]
                tuple_confs_im.append(conf)
                n_idx += 1
        if (args.ds_name == 'vrd'):
            rlp_labels_im += 1
        tuple_confs_im = np.array(tuple_confs_im)
        idx_order = tuple_confs_im.argsort()[::-1][:100]
        rlp_labels_im = rlp_labels_im[idx_order, :]
        tuple_confs_im = tuple_confs_im[idx_order]
        sub_bboxes_im = sub_bboxes_im[idx_order, :]
        obj_bboxes_im = obj_bboxes_im[idx_order, :]
        rlp_labels_ours.append(rlp_labels_im)
        tuple_confs_cell.append(tuple_confs_im)
        sub_bboxes_cell.append(sub_bboxes_im)
        obj_bboxes_cell.append(obj_bboxes_im)
    res['rlp_labels_ours'] = rlp_labels_ours
    res['rlp_confs_ours'] = tuple_confs_cell
    res['sub_bboxes_ours'] = sub_bboxes_cell
    res['obj_bboxes_ours'] = obj_bboxes_cell
    rec_50 = eval_reall_at_N(args.ds_name, 50, res, use_zero_shot=False)
    rec_50_zs = eval_reall_at_N(args.ds_name, 50, res, use_zero_shot=True)
    rec_100 = eval_reall_at_N(args.ds_name, 100, res, use_zero_shot=False)
    rec_100_zs = eval_reall_at_N(args.ds_name, 100, res, use_zero_shot=True)
    print('CLS OBJ TEST POS:%f, LOC:%f, GT:%f, Precision:%f, Recall:%f' %
          (pos_num, loc_num, gt_num, pos_num /
           (pos_num + loc_num), pos_num / gt_num))
    print('CLS REL TEST r50:%f, r50_zs:%f, r100:%f, r100_zs:%f' %
          (rec_50, rec_50_zs, rec_100, rec_100_zs))
    time2 = time.time()
    print("TEST Time:%s" %
          (time.strftime('%H:%M:%S', time.gmtime(int(time2 - time1)))))
    return rec_50, rec_50_zs, rec_100, rec_100_zs