#check output dir logger.debug("Create new model dir...") if os.path.isdir(args.model_dir): new_name = args.model_dir+time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) logger.debug("backup old model-dir in %s" %new_name ) os.rename(args.model_dir, new_name ) os.makedirs(args.model_dir) #list classes list_classes = os.listdir(args.train_dir) logger.info("classes are : %s" %list_classes) #use descriptor desc=None if args.descriptor: desc = descriptors.get(args.descriptor) logger.info("using descriptor %s" %args.descriptor) else: logger.info("No descriptor is used") #create dataframe logger.info("create data frame for training...") train_df = pd.DataFrame(columns=["path", "desc", "class"]) for cls in list_classes: list_images_paths = glob.glob(os.path.join(args.train_dir, cls, "*.*")) for id in xrange(len(list_images_paths)): descvect=None if desc is not None: descvect = desc(list_images_paths[id]).run()
os.rename(args.output_dir, args.output_dir+time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime())) os.makedirs(args.output_dir) #model infos with open(os.path.join(args.model_dir,"model.json"),'r') as json_file: json_data = json.load(json_file) descriptor_name = json_data["descriptor"] model_name = json_data["model"] normalizer_name = json_data["normalizer"] model = joblib.load(os.path.join(args.model_dir, "model", "model.pkl")) logging.info("descriptor = %s, model = %s" %(descriptor_name, model_name)) #use descriptor desc=None if descriptor_name is not None: desc = descriptors.get(descriptor_name) logger.info("using descriptor %s" %desc.__name__) #create dataframe test_df = pd.DataFrame(columns=["path", "desc", "class"]) list_images_paths = glob.glob(os.path.join(args.test_dir, "*.*")) for id in xrange(len(list_images_paths)): descvect=None if desc is not None: descvect = desc(list_images_paths[id]).run() test_df.loc[len(test_df)+1] = [list_images_paths[id], str(descvect) , -1]