Beispiel #1
0
class ReplayBuffer():
    def __init__(self, agent_num, model_structure, model_weight, height, width, path = "./buffer", cuda=False):
        #initial the model in the replay buffer
        #model is be defined using pytorch lib
        self.model = model_structure
        self.model_weight = model_weight

        self.loadWeight()

        #the game is the enviroment of route planning game in the project
        self.height = height
        self.width = width

        self.game = None

        self.hx = None
        self.cx = None
        self.bot_observe = None

        # self.agent_numbers = int(((self.height + self.width) / 2) * 0.3)
        self.agent_numbers = agent_num

        #default score setting in the game
        self.acquisition_sum = 700
        self.explored_target_sum = 70
        self.explored_sum = 40
        self.time_decrease = -0.00005
        self.crash_time_penalty = -0.0001
        self.crash_sum = -20

        #path is the folder of the replay buffer
        self.path = path
        if not os.path.exists(path):
            os.makedirs(path)

        self.IOlimit = 20
        self.buffer_limit = 1000

        self.cuda = cuda
        print(cuda)

    def collect(self, game_round):
        #data is stored in the python list using pickle
        #data list is a 2d list index is the batch index of collection
        if self.game == None:
            self.initialGame()
        
        if self.cuda:
            self.model.cuda()
        #collecting part
        while True:
            data = []

            collect_iter = 0

            while collect_iter < self.IOlimit:
                temp = []
                if self.game.active and self.game.state < game_round:
                    #observe part of the bot
                    # bot_observe = np.zeros((self.agent_numbers, 3, self.width, self.height))

                    # for i in range(self.agent_numbers):
                    #     bot_observe[i] = self.game.outputAgentImage(i)

                    if self.bot_observe is None:
                        self.bot_observe = [self.game.outputAgentImage(i) for i in range(self.agent_numbers)]
                        self.bot_observe = np.array(bot_observe).astype(np.uint8)

                    # bot_observe = np.uint8(bot_observe)
                    #batch * width * height * 3 (numpy array)[0]
                    temp.append(self.bot_observe)

                    temp.append(self.hx) #batch * 512[1](tensor)[1]
                    temp.append(self.cx) #batch * 512[1](tensor)[2]

                    #model output process
                    self.bot_observe = torch.from_numpy(self.bot_observe).float()

                    if self.cuda:
                        self.hx = self.hx.cuda()
                        self.cx = self.cx.cuda()
                        self.bot_observe = self.bot_observe.cuda()

                    critic_score, bot_command, (self.hx, self.cx) = self.model(self.bot_observe, self.hx, self.cx)

                    #bot action tensor
                    temp.append(bot_command.cpu()) #tensor[3]

                    #game score output
                    temp.append(self.game.outputScore()) #float[4]

                    #input the commands of the model to the game
                    commands = self.interpretAction(bot_command.cpu())
                    self.game.runOneRound(commands)

                    self.bot_observe = [self.game.outputAgentImage(i) for i in range(self.agent_numbers)]
                    self.bot_observe = np.array(self.bot_observe).astype(np.uint8)

                    #batch * width * height * 3 (numpy array)[5]
                    temp.append(self.bot_observe)

                    temp.append(self.hx.cpu()) #batch * 512[1](tensor)[6]
                    temp.append(self.cx.cpu()) #batch * 512[1](tensor)[7]

                    #game score output
                    temp.append(self.game.outputScore()) #float[8]

                    data.append(temp)

                    collect_iter += 1

                    if collect_iter % 5 == 0 and collect_iter is not 0:
                        print('Collecting Progress: ', collect_iter, ' / ', self.IOlimit, ' | Score: %02.5f' % self.game.outputScore())
                else:
                    #only occur when the game is not active
                    self.initialGame()

            #print('Collecting process done\nStart writing file...')
            
            for i in range(self.IOlimit):
                filename = self.path + '/' + datetime.datetime.now().isoformat() + '.pkl'
                save_object(filename, data[i])

            #print('All collection process done\n')

            del data
            self.loadWeight()

    def loadWeight(self):
        if os.path.exists(self.model_weight):
            self.model.load_state_dict(torch.load(self.model_weight))
        else:
            print('Model weight [{0}] not found'.format(self.model_weight))
        return

    def initialGame(self):
        #initial the game envirnment for th replay buffer
        t = (self.height + self.width) / 2

        self.game = Game(self.height, self.width)
        self.game.setRandomMap(self.agent_numbers, int(t * 0.3) ** 2, 1)
        self.game.setScore(self.acquisition_sum, self.explored_target_sum, self.explored_sum, self.time_decrease, self.crash_time_penalty, self.crash_sum)

        commands = [Command(i, 0, 0) for i in range(self.agent_numbers)]
        self.game.runOneRound(commands)

        #the memory tensor of the model in the lstm
        self.hx = torch.zeros([self.agent_numbers, 512], dtype=torch.float32)
        self.cx = torch.zeros([self.agent_numbers, 512], dtype=torch.float32)

        self.bot_observe = [self.game.outputAgentImage(i) for i in range(self.agent_numbers)]
        self.bot_observe = np.array(self.bot_observe).astype(np.uint8)

        print('New Game!')

    def resetGameScore(self, acquisition_sum, explored_target_sum, explored_sum, time_decrease, crash_time_penalty, crash_sum):
        #the score calculating standard of the game
        self.acquisition_sum = acquisition_sum
        self.explored_target_sum = explored_target_sum
        self.explored_sum = explored_sum
        self.time_decrease = time_decrease
        self.crash_time_penalty = crash_time_penalty
        self.crash_sum = crash_sum

    def countFileNum(self, path):
        file_list = os.listdir(path)
        count = 0
        for i in range(len(file_list)):
            if file_list[i].endswith('.pkl'):
                count += 1

        return count

    def grabFileName(self, path):
        file_list = os.listdir(path)
        name_list = []
        for i in range(len(file_list)):
            if file_list[i].endswith('.pkl'):
                name_list.append(file_list[i])

        return name_list

    def resetIOBatch(self, new_limit):
        self.IOlimit = new_limit

    def resetBufferLimit(self, new_limit):
        self.buffer_limit = new_limit

    def interpretAction(self, command_tensor):
        command_tensor = command_tensor.view(-1, 5)
        command = torch.max(command_tensor, 1)[1].tolist()
        commands = [self.intoCommand(i, command[i]) for i in range(len(command))]
        return commands

    def intoCommand(self, i, command):
        if command == 0: return Command(i, 0, 1)
        elif command == 1: return Command(i, 1, 0)
        elif command == 2: return Command(i, 0, -1)
        elif command == 3: return Command(i, -1, 0)
        return Command(i, 0, 0)
Beispiel #2
0
class ReplayBuffer():
    def __init__(self, agent_num, height, width, model, modelpath, game_round, cuda=True):
        #initial the model in the replay buffer
        #model is be defined using pytorch lib

        #the game is the enviroment of route planning game in the project
        self.height = height
        self.width = width
        self.game_round = game_round
        self.agent_num = agent_num
        self.model = model
        self.modelpath = modelpath
        self.cuda = cuda

        self.state = torch.zeros([self.agent_num, 3, self.height, self.width], dtype=torch.float32)

        #default score setting in the game
        self.acquisition_sum = 400
        self.explored_target_sum = 70
        self.explored_sum = 40
        self.total_score = self.acquisition_sum + self.explored_target_sum + self.explored_sum
        self.time_decrease = -0.00005
        self.crash_time_penalty = -0.0001
        self.crash_sum = -400
        self.reg_val = 1

        # self.action = torch.tensor([random.randint(0, 4) for i in range(self.agent_num)])
        self.memory = []
        self.buffer_limit = 1000

        self.game = None
        self.score = None
        self.initialGame()

    def collect(self, model, verbose=1):
        if self.cuda:
            self.model.cuda()

        self.model.load_state_dict(model.state_dict())

        if self.game.active and self.game.state < self.game_round:
            #observe part of the bot
            action = self.select_action()

            self.game.runOneRound([intoCommand(i, action[i]) for i in range(self.agent_num)])

            next_state = np.array([self.game.outputAgentImage(i) for i in range(self.agent_num)]).astype(np.float32)
            next_state = torch.from_numpy(next_state)

            if verbose == 1:
                print(self.game.outputScore())

            done = False
            if self.game.active is False:
                done = True

            data = Data(self.state, action, next_state)
            self.memory.append(data)

            self.state = next_state

            if len(self.memory) > self.buffer_limit:
                self.memory.remove(self.memory[0])
        else:
            #only occur when the game is not active
            self.initialGame()

    
    def select_action(self):
        return torch.tensor([random.randint(0, 4) for i in range(self.agent_num)])


    def save_state(self, path):
        for i in range(self.agent_num):
            img = np.zeros([32, 32, 3], dtype=np.uint8)
            arr = self.game.outputAgentImage(i)
            img[:,:,0] = arr[0,:,:]
            img[:,:,1] = arr[1,:,:]
            img[:,:,2] = arr[2,:,:]
            plt.subplot(2,2,i + 1)
            plt.imshow(img)
        plt.show()

    def play(self, model, game_round):
        while self.game.active and self.game.state < game_round:
            self.states[0] = self.states[1]
            self.states[1] = self.states[2]
            self.states[2] = self.states[3]
            s = np.array([self.game.outputAgentImage(i) for i in range(self.agent_num)]).astype(np.float32)
            s = torch.from_numpy(s)
            self.states[3] = s

            action = model(self.states[1:].unsqueeze(0)).max(2)[1].view(self.agent_num)
            print(action)
            action = [intoCommand(i, action[i]) for i in range(self.agent_num)]
            self.game.runOneRound(action)
            print(self.game.outputScore())
            sleep(0.1)

    def initialGame(self):
        #initial the game envirnment for th replay buffer
        t = (self.height + self.width) / 2

        self.game = Game(self.height, self.width, self.game_round)
        self.game.setRandomMap(self.agent_num, int(t * 0.3) ** 2, int(t * 0.1) ** 2)
        self.game.setScore(self.acquisition_sum, self.explored_target_sum, self.explored_sum, self.time_decrease, self.crash_time_penalty, self.crash_sum, self.reg_val)

        self.game.runOneRound([Command(i, 0, 0) for i in range(self.agent_num)])
        self.score = np.array([self.game.outputScore() for i in range(self.agent_num)])
 
        self.state = np.array([self.game.outputAgentImage(i) for i in range(self.agent_num)]).astype(np.float32)
        self.state = torch.from_numpy(self.state)

        print('New Game!')

    def loadWeight(self):
        if os.path.exists(self.modelpath):
            if self.cuda:
                self.model.load_state_dict(torch.load(self.modelpath))
            else:
                self.model.load_state_dict(torch.load(self.modelpath, map_location='cpu'))
        else:
            print('Model weight [{0}] not found'.format(self.modelpath))
        return