def testModelHasExpectedNumberOfParameters(self):
   batch_size = 5
   height, width = 224, 224
   inputs = tf.random_uniform((batch_size, height, width, 3))
   with slim.arg_scope(inception.inception_v2_arg_scope()):
     inception.inception_v2_base(inputs)
   total_params, _ = slim.model_analyzer.analyze_vars(
       slim.get_model_variables())
   self.assertAlmostEqual(10173112, total_params)
    def testBuildErrorsForDataFormats(self):
        batch_size = 5
        height, width = 224, 224

        inputs = tf.random_uniform((batch_size, height, width, 3))

        # 'NCWH' data format is not supported.
        with self.assertRaises(ValueError):
            _ = inception.inception_v2_base(inputs, data_format='NCWH')

        # 'NCHW' data format is not supported for separable convolution.
        with self.assertRaises(ValueError):
            _ = inception.inception_v2_base(inputs, data_format='NCHW')
  def testBuildAndCheckAllEndPointsUptoMixed5c(self):
    batch_size = 5
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, height, width, 3))
    _, end_points = inception.inception_v2_base(inputs,
                                                final_endpoint='Mixed_5c')
    endpoints_shapes = {'Mixed_3b': [batch_size, 28, 28, 256],
                        'Mixed_3c': [batch_size, 28, 28, 320],
                        'Mixed_4a': [batch_size, 14, 14, 576],
                        'Mixed_4b': [batch_size, 14, 14, 576],
                        'Mixed_4c': [batch_size, 14, 14, 576],
                        'Mixed_4d': [batch_size, 14, 14, 576],
                        'Mixed_4e': [batch_size, 14, 14, 576],
                        'Mixed_5a': [batch_size, 7, 7, 1024],
                        'Mixed_5b': [batch_size, 7, 7, 1024],
                        'Mixed_5c': [batch_size, 7, 7, 1024],
                        'Conv2d_1a_7x7': [batch_size, 112, 112, 64],
                        'MaxPool_2a_3x3': [batch_size, 56, 56, 64],
                        'Conv2d_2b_1x1': [batch_size, 56, 56, 64],
                        'Conv2d_2c_3x3': [batch_size, 56, 56, 192],
                        'MaxPool_3a_3x3': [batch_size, 28, 28, 192]}
    self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
    for endpoint_name in endpoints_shapes:
      expected_shape = endpoints_shapes[endpoint_name]
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)
    def testBuildEndPointsWithUseSeparableConvolutionFalse(self):
        batch_size = 5
        height, width = 224, 224

        inputs = tf.random_uniform((batch_size, height, width, 3))
        _, end_points = inception.inception_v2_base(inputs)

        endpoint_keys = [
            key for key in end_points.keys()
            if key.startswith('Mixed') or key.startswith('Conv')
        ]

        _, end_points_with_replacement = inception.inception_v2_base(
            inputs, use_separable_conv=False)

        # The endpoint shapes must be equal to the original shape even when the
        # separable convolution is replaced with a normal convolution.
        for key in endpoint_keys:
            original_shape = end_points[key].get_shape().as_list()
            self.assertTrue(key in end_points_with_replacement)
            new_shape = end_points_with_replacement[key].get_shape().as_list()
            self.assertListEqual(original_shape, new_shape)
 def testBuildOnlyUptoFinalEndpoint(self):
   batch_size = 5
   height, width = 224, 224
   endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
                'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c',
                'Mixed_4a', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e',
                'Mixed_5a', 'Mixed_5b', 'Mixed_5c']
   for index, endpoint in enumerate(endpoints):
     with tf.Graph().as_default():
       inputs = tf.random_uniform((batch_size, height, width, 3))
       out_tensor, end_points = inception.inception_v2_base(
           inputs, final_endpoint=endpoint)
       self.assertTrue(out_tensor.op.name.startswith(
           'InceptionV2/' + endpoint))
       self.assertItemsEqual(endpoints[:index+1], end_points)
  def testBuildBaseNetwork(self):
    batch_size = 5
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, height, width, 3))
    mixed_5c, end_points = inception.inception_v2_base(inputs)
    self.assertTrue(mixed_5c.op.name.startswith('InceptionV2/Mixed_5c'))
    self.assertListEqual(mixed_5c.get_shape().as_list(),
                         [batch_size, 7, 7, 1024])
    expected_endpoints = ['Mixed_3b', 'Mixed_3c', 'Mixed_4a', 'Mixed_4b',
                          'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_5a',
                          'Mixed_5b', 'Mixed_5c', 'Conv2d_1a_7x7',
                          'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3',
                          'MaxPool_3a_3x3']
    self.assertItemsEqual(end_points.keys(), expected_endpoints)
    def testBuildEndPointsNCHWDataFormat(self):
        batch_size = 5
        height, width = 224, 224

        inputs = tf.random_uniform((batch_size, height, width, 3))
        _, end_points = inception.inception_v2_base(inputs)

        endpoint_keys = [
            key for key in end_points.keys()
            if key.startswith('Mixed') or key.startswith('Conv')
        ]

        inputs_in_nchw = tf.random_uniform((batch_size, 3, height, width))
        _, end_points_with_replacement = inception.inception_v2_base(
            inputs_in_nchw, use_separable_conv=False, data_format='NCHW')

        # With the 'NCHW' data format, all endpoint activations have a transposed
        # shape from the original shape with the 'NHWC' layout.
        for key in endpoint_keys:
            transposed_original_shape = tf.transpose(
                end_points[key], [0, 3, 1, 2]).get_shape().as_list()
            self.assertTrue(key in end_points_with_replacement)
            new_shape = end_points_with_replacement[key].get_shape().as_list()
            self.assertListEqual(transposed_original_shape, new_shape)