Beispiel #1
0
    if args.scheduler:
        scheduler = torch.optim.lr_scheduler.MultiStepLR(
            optimizer, milestones=[60, 120, 160], gamma=0.2, last_epoch=args.begin_epoch - 1
        )
else:
    raise ValueError('Unknown optimizer {}'.format(args.optimizer))

best_test_bpd = math.inf
if (args.resume is not None):
    logger.info('Resuming model from {}'.format(args.resume))
    with torch.no_grad():
        x = torch.rand(1, *input_size[1:]).to(device)
        model(x)
    checkpt = torch.load(args.resume)
    sd = {k: v for k, v in checkpt['state_dict'].items() if 'last_n_samples' not in k}
    state = model.state_dict()
    state.update(sd)
    model.load_state_dict(state, strict=True)
    ema.set(checkpt['ema'])
    if 'optimizer_state_dict' in checkpt:
        optimizer.load_state_dict(checkpt['optimizer_state_dict'])
        # Manually move optimizer state to GPU
        for state in optimizer.state.values():
            for k, v in state.items():
                if torch.is_tensor(v):
                    state[k] = v.to(device)
    del checkpt
    del state

logger.info(optimizer)
Beispiel #2
0
            gamma=0.2,
            last_epoch=args.begin_epoch - 1)
else:
    raise ValueError('Unknown optimizer {}'.format(args.optimizer))

if (args.resume is not None):
    logger.info('Resuming model from {}'.format(args.resume))
    with torch.no_grad():
        x = torch.rand(1, *input_size[1:]).to(device)
        model2(x)
    checkpt = torch.load(args.resume)
    sd = {
        k: v
        for k, v in checkpt['state_dict'].items() if 'last_n_samples' not in k
    }
    state = model2.state_dict()
    state.update(sd)
    model2.load_state_dict(state, strict=True)
    ema.set(checkpt['ema'])
    if 'optimizer_state_dict' in checkpt:
        optimizer.load_state_dict(checkpt['optimizer_state_dict'])
        # Manually move optimizer state to GPU
        for state in optimizer.state.values():
            for k, v in state.items():
                if torch.is_tensor(v):
                    state[k] = v.to(device)
    del checkpt
    del state

best_test_bpd = math.inf
if (args.resume is not None):