Beispiel #1
0
def align_face(img,pnet, rnet, onet):

    minsize = 20 # minimum size of face
    threshold = [ 0.6, 0.7, 0.7 ]  # three steps's threshold
    factor = 0.709 # scale factor

    print("before img.size == 0")	
    if img.size == 0:
        print("empty array")
        return False,img,[0,0,0,0]

    if img.ndim<2:
        print('Unable to align')

    if img.ndim == 2:
        img = to_rgb(img)

    img = img[:,:,0:3]

    bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)

    nrof_faces = bounding_boxes.shape[0]

        
    if nrof_faces==0:
        return False,img,[0,0,0,0]
    else:
        det = bounding_boxes[:,0:4]
        det_arr = []
        img_size = np.asarray(img.shape)[0:2]
        if nrof_faces>1:
            if args.detect_multiple_faces:
                for i in range(nrof_faces):
                    det_arr.append(np.squeeze(det[i]))
            else:
                bounding_box_size = (det[:,2]-det[:,0])*(det[:,3]-det[:,1])
                img_center = img_size / 2
                offsets = np.vstack([ (det[:,0]+det[:,2])/2-img_center[1], (det[:,1]+det[:,3])/2-img_center[0] ])
                offset_dist_squared = np.sum(np.power(offsets,2.0),0)
                index = np.argmax(bounding_box_size-offset_dist_squared*2.0) # some extra weight on the centering
                det_arr.append(det[index,:])
        else:
            det_arr.append(np.squeeze(det))
        if len(det_arr)>0:
                faces = []
                bboxes = []
        for i, det in enumerate(det_arr):
            det = np.squeeze(det)
            bb = np.zeros(4, dtype=np.int32)
            bb[0] = np.maximum(det[0]-args.margin/2, 0)
            bb[1] = np.maximum(det[1]-args.margin/2, 0)
            bb[2] = np.minimum(det[2]+args.margin/2, img_size[1])
            bb[3] = np.minimum(det[3]+args.margin/2, img_size[0])
            cropped = img[bb[1]:bb[3],bb[0]:bb[2],:]
            scaled = misc.imresize(cropped, (args.image_size, args.image_size), interp='bilinear')
            misc.imsave("cropped.png", scaled)
            faces.append(scaled)
            bboxes.append(bb)
            print("leaving align face")
        return True,faces,bboxes
Beispiel #2
0
def get_faces_live(img, pnet, rnet, onet, image_size):
    """Detects multiple human faces live from web camera frame.

    Args:
        img: web camera frame.
        pnet: proposal net, first stage of the MTCNN face detection.
        rnet: refinement net, second stage of the MTCNN face detection.
        onet: output net,  third stage of the MTCNN face detection.
        image_size: (int) required square image size.

     Returns:
           faces: List containing the cropped human faces.
           rects: List containing the rectangle coordinates to be drawn around each human face.
    """
    # Default constants from the FaceNet repository implementation of the MTCNN
    minsize = 20
    threshold = [0.6, 0.7, 0.7]
    factor = 0.709
    margin = 44
    input_image_size = image_size

    faces = []
    rects = []
    img_size = np.asarray(img.shape)[0:2]
    bounding_boxes, _ = detect_face(img=img,
                                    minsize=minsize,
                                    pnet=pnet,
                                    rnet=rnet,
                                    onet=onet,
                                    threshold=threshold,
                                    factor=factor)
    # If human face(s) is/are detected:
    if not len(bounding_boxes) == 0:
        for face in bounding_boxes:
            if face[4] > 0.50:
                det = np.squeeze(face[0:4])
                bb = np.zeros(4, dtype=np.int32)
                bb[0] = np.maximum(det[0] - margin / 2, 0)
                bb[1] = np.maximum(det[1] - margin / 2, 0)
                bb[2] = np.minimum(det[2] + margin / 2, img_size[1])
                bb[3] = np.minimum(det[3] + margin / 2, img_size[0])
                cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
                resized = imresize(arr=cropped,
                                   size=(input_image_size, input_image_size),
                                   mode='RGB')
                faces.append(resized)
                rects.append([bb[0], bb[1], bb[2], bb[3]])

    return faces, rects
Beispiel #3
0
def get_face(img, pnet, rnet, onet, image_size):
    """Crops an image containing a single human face from the input image if it exists; using a Multi-Task Cascading
    Convolutional neural network, then resizes the image to the required image size: default = (160 x 160 x 3).
    If no face is detected, it returns a null value.

    Args:
          img: (numpy array) image file
          pnet: proposal net, first stage of the MTCNN face detection
          rnet: refinement net, second stage of the MTCNN face detection
          onet: output net,  third stage of the MTCNN face detection
          image_size: (int) required square image size

    Returns:
          face_img: an image containing a face of image_size: default = (160 x 160 x 3)
                    if no human face is detected a None value is returned instead.
    """
    # Default constants from the FaceNet repository implementation of the MTCNN
    minsize = 20
    threshold = [0.6, 0.7, 0.7]
    factor = 0.709
    margin = 44
    input_image_size = image_size

    img_size = np.asarray(img.shape)[0:2]
    bounding_boxes, _ = detect_face(img=img,
                                    minsize=minsize,
                                    pnet=pnet,
                                    rnet=rnet,
                                    onet=onet,
                                    threshold=threshold,
                                    factor=factor)

    if not len(bounding_boxes) == 0:
        for face in bounding_boxes:
            det = np.squeeze(face[0:4])
            bb = np.zeros(4, dtype=np.int32)
            bb[0] = np.maximum(det[0] - margin / 2, 0)
            bb[1] = np.maximum(det[1] - margin / 2, 0)
            bb[2] = np.minimum(det[2] + margin / 2, img_size[1])
            bb[3] = np.minimum(det[3] + margin / 2, img_size[0])
            cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
            face_img = imresize(arr=cropped,
                                size=(input_image_size, input_image_size),
                                mode='RGB')
            return face_img
    else:
        return None
Beispiel #4
0
def main(input_dir, output_dir, image_size, margin, random_order,
         gpu_memory_fraction, detect_multiple_faces):
    sleep(random.random())
    output_dir = os.path.expanduser(output_dir)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    # Store some git revision info in a text file in the log directory
    #src_path,_ = os.path.split(os.path.realpath(__file__))
    src_path = input_dir
    facenet.store_revision_info(src_path, output_dir, ' '.join(sys.argv))
    dataset = facenet.get_dataset(input_dir)

    print('Creating networks and loading parameters')

    with tf.Graph().as_default():
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                log_device_placement=False))
        with sess.as_default():
            pnet, rnet, onet = detect_face.create_mtcnn(sess, None)

    minsize = 20  # minimum size of face
    threshold = [0.6, 0.7, 0.7]  # three steps's threshold
    factor = 0.709  # scale factor

    # Add a random key to the filename to allow alignment using multiple processes
    random_key = np.random.randint(0, high=99999)
    #bounding_boxes_filename = os.path.join(output_dir, 'bounding_boxes_%05d.txt' % random_key)

    if 1:

        nrof_images_total = 0
        nrof_successfully_aligned = 0
        if random_order:
            random.shuffle(dataset)
        for cls in dataset:
            print("cls.name", cls.name)
            output_class_dir = os.path.join(output_dir, cls.name)
            if not os.path.exists(output_class_dir):
                os.makedirs(output_class_dir)
                if random_order:
                    random.shuffle(cls.image_paths)
            for image_path in cls.image_paths:
                nrof_images_total += 1
                filename = os.path.splitext(os.path.split(image_path)[1])[0]
                output_filename = os.path.join(output_class_dir,
                                               filename + '.png')
                print(image_path)
                if not os.path.exists(output_filename):
                    try:
                        img = misc.imread(image_path)
                    except (IOError, ValueError, IndexError) as e:
                        errorMessage = '{}: {}'.format(image_path, e)
                        print(errorMessage)
                    else:
                        if img.ndim < 2:
                            print('Unable to align "%s"' % image_path)
                            #text_file.write('%s\n' % (output_filename))
                            continue
                        if img.ndim == 2:
                            img = facenet.to_rgb(img)
                        img = img[:, :, 0:3]

                        bounding_boxes, _ = detect_face.detect_face(
                            img, minsize, pnet, rnet, onet, threshold, factor)
                        nrof_faces = bounding_boxes.shape[0]
                        if nrof_faces > 0:
                            det = bounding_boxes[:, 0:4]
                            det_arr = []
                            img_size = np.asarray(img.shape)[0:2]
                            if nrof_faces > 1:
                                if detect_multiple_faces:
                                    for i in range(nrof_faces):
                                        det_arr.append(np.squeeze(det[i]))
                                else:
                                    bounding_box_size = (
                                        det[:, 2] - det[:, 0]) * (det[:, 3] -
                                                                  det[:, 1])
                                    img_center = img_size / 2
                                    offsets = np.vstack([
                                        (det[:, 0] + det[:, 2]) / 2 -
                                        img_center[1],
                                        (det[:, 1] + det[:, 3]) / 2 -
                                        img_center[0]
                                    ])
                                    offset_dist_squared = np.sum(
                                        np.power(offsets, 2.0), 0)
                                    index = np.argmax(
                                        bounding_box_size -
                                        offset_dist_squared * 2.0
                                    )  # some extra weight on the centering
                                    det_arr.append(det[index, :])
                            else:
                                det_arr.append(np.squeeze(det))

                            for i, det in enumerate(det_arr):
                                det = np.squeeze(det)
                                bb = np.zeros(4, dtype=np.int32)
                                bb[0] = np.maximum(det[0] - margin / 2, 0)
                                bb[1] = np.maximum(det[1] - margin / 2, 0)
                                bb[2] = np.minimum(det[2] + margin / 2,
                                                   img_size[1])
                                bb[3] = np.minimum(det[3] + margin / 2,
                                                   img_size[0])
                                cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
                                scaled = misc.imresize(
                                    cropped, (image_size, image_size),
                                    interp='bilinear')
                                nrof_successfully_aligned += 1
                                output_filename_n = "{}_{}.{}".format(
                                    output_filename.split('.')[0], i,
                                    output_filename.split('.')[-1])
                                misc.imsave(output_filename_n, scaled)
                                #text_file.write('%s %d %d %d %d\n' % (output_filename_n, bb[0], bb[1], bb[2], bb[3]))
                        else:
                            print('Unable to align "%s"' % image_path)
                            #text_file.write('%s\n' % (output_filename))

    os.remove(os.path.join(settings.BASE_DIR,
                           f'media/datab/revision_info.txt'))
    print('Total number of images: %d' % nrof_images_total)
    print('Number of successfully aligned images: %d' %
          nrof_successfully_aligned)