elif dataset.upper().startswith('KTH'):
        from lib.dataloaders.kth_dataset import Video_Dataset_small_clip
    else:
        raise ('Unknown Dataset')

    dataset_frames = os.path.abspath(
        os.path.join(root_path, dataset_cfg.dataset.dataset_frames_folder))
    boxes_file = os.path.abspath(
        os.path.join(root_path, dataset_cfg.dataset.boxes_file))
    split_txt_path = os.path.abspath(
        os.path.join(root_path, dataset_cfg.dataset.split_txt_path))

    ### get videos id
    actions = dataset_cfg.dataset.classes
    cls2idx = {actions[i]: i for i in range(0, len(actions))}
    vid2idx, vid_names = get_vid_dict(dataset_frames)

    # # get mean
    # mean = [112.07945832, 112.87372333, 106.90993363]  # ucf-101 24 classes
    mean = [0.5, 0.5, 0.5]
    std = [0.5, 0.5, 0.5]

    spatial_transform = Compose([
        Scale(sample_size),  # [Resize(sample_size),
        ToTensor(),
        Normalize(mean, std)
    ])
    temporal_transform = LoopPadding(sample_duration)

    n_classes = len(actions)
    mean = [112.07945832, 112.87372333, 106.90993363]  # ucf-101 24 classes

    # generate model
    actions = [
        '__background__', 'Basketball', 'BasketballDunk', 'Biking',
        'CliffDiving', 'CricketBowling', 'Diving', 'Fencing',
        'FloorGymnastics', 'GolfSwing', 'HorseRiding', 'IceDancing',
        'LongJump', 'PoleVault', 'RopeClimbing', 'SalsaSpin', 'SkateBoarding',
        'Skiing', 'Skijet', 'SoccerJuggling', 'Surfing', 'TennisSwing',
        'TrampolineJumping', 'VolleyballSpiking', 'WalkingWithDog'
    ]

    cls2idx = {actions[i]: i for i in range(0, len(actions))}

    ### get videos id
    vid2idx, vid_names = get_vid_dict(dataset_folder)

    spatial_transform = Compose([
        Scale(sample_size),  # [Resize(sample_size),
        ToTensor(),
        Normalize(mean, [1, 1, 1])
    ])
    temporal_transform = LoopPadding(sample_duration)

    n_classes = len(actions)

    ##########################################
    #          Model Initialization          #
    ##########################################

    model = Model(actions, sample_duration, sample_size)