def makeTorrent(fname, folder = "."): data = { "announce": "http://open.nyaatorrents.info:6544/announce", "announce-list": [["http://open.nyaatorrents.info:6544/announce"],["udp://tracker.openbittorrent.com:80/announce"]], "info": {}, "creation date": long(time.time()), "comment": "#[email protected]", "created by": "Servrhe", "encoding": "UTF-8" } data["info"]["name"] = normalize(fname) data["info"]["length"] = size = os.path.getsize("{}/{}".format(folder, fname)) # 1MB pieces if file > 512MB, else 512KB pieces data["info"]["piece length"] = piece_length = 2**20 if size > 512*1024*1024 else 2**19 pieces = [] with open("{}/{}".format(folder, fname), "rb") as f: p = 0L while p < size: chunk = f.read(min(piece_length, size - p)) pieces.append(hashlib.sha1(chunk).digest()) p += piece_length data["info"]["pieces"] = "".join(pieces) torrentname = fname + ".torrent" with open("{}/{}".format(folder, torrentname), "wb") as f: f.write(bencode(data)) return torrentname
def update_topic(self): shows = yield self.load("shows","current_episodes") shows = [(s["abbr"], s["current_ep"], s["last_release"]) for s in shows["results"]] shows.sort(key=lambda x: x[2], reverse=True) shows = ", ".join(["{} {:d}".format(s[0],s[1]) for s in shows[:self.config.topic[1]]]) topic = " || ".join([self.config.topic[0], shows, "Mahoyo progress: {:0.2f}%".format(self.config.topic[2])] + self.config.topic[3:]) self.protocols[0].topic("#commie-subs", normalize(topic))
def train(): loader = SVHNLoader('./data') net = shufflenet((32, 32, 3)) net.train(loader.train_samples, loader.train_labels, iteration_steps=2000, chunkSize=64) net.test(loader.test_samples, loader.test_labels, chunkSize=200) image = cv2.imread('./2.jpg') image = cv2.resize(image, (32, 32), interpolation=cv2.INTER_CUBIC) # image = utils.gray(image) image = utils.normalize(image) n = net.predict(image) print(np.argmax(n))
def clean(o): if isinstance(o, dict): c = {} for k, v in o.items(): c[clean(k)] = clean(v) return c elif isinstance(o, list): return [clean(v) for v in o] elif isinstance(o, basestring): return normalize(o) else: return o
def smooth_depth_map(depth, conf, percentile, fore_mask): print('Smoothing depth map with %d-th percentile...' % (percentile)) # Mark pixels with confidence < x percentile as not credible in mask, so that # we can inpaint these areas from high-confidence pixels. conf_thresh = np.percentile(conf, percentile) mask = np.zeros(depth.shape, np.uint8) mask[(conf < conf_thresh) & (fore_mask == 1)] = 1 output_depth = np.array(depth) output_depth[mask == 1] = VERY_FAR viz.normalize_and_draw(output_depth, './doll_data_out/masked_depth.jpg', 0) norm_depth, scale, shift = utils.normalize(depth, 0, 255.0) smooth_depth = np.array(norm_depth, np.uint8) smooth_depth = cv2.inpaint(smooth_depth, mask, \ DEPTH_SMOOTH_INPAINT_SIZE, cv2.INPAINT_TELEA) viz.normalize_and_draw(smooth_depth, './doll_data_out/noisy_depth.jpg', 0) smooth_depth = cv2.fastNlMeansDenoising(smooth_depth, \ h=DEPTH_SMOOTH_DENOISE_STRENGTH) smooth_depth = np.array(smooth_depth, np.float32) smooth_depth *= scale smooth_depth += shift return smooth_depth
def smooth_depth_map_new(depth, conf, mask, img): img = np.array(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), np.float32) adj_conf = np.array(conf) adj_conf[mask == 1] = utils.hist_equalize(conf[mask == 1], (1e-3, 1.0)) adj_conf[mask == 1] = np.exp(-1.0 / adj_conf[mask == 1]) adj_conf[mask == 0] = 0.0 win_hsize = SMOOTH_WINDOW_HALFSIZE win_size = win_hsize * 2 + 1 dist_filter = np.zeros([win_size, win_size], np.float32) for y in range(win_size): for x in range(win_size): dist_filter[y, x] = (y - win_hsize)**2 + (x - win_hsize)**2 dist_filter = np.exp(-dist_filter / DIST_COEFF**2) depth = np.array(depth, np.float32) status_mask = np.array(mask, np.uint8) weight_map = np.zeros(depth.shape, np.float32) thresh = 1.0 decay = SMOOTH_DECAY np.set_printoptions(precision=3) while True: thresh *= decay print('Smoothing with thresh=%.3f' % thresh) new_finalized = (adj_conf > math.exp(-1.0 / thresh)) & (status_mask == 1) num_new_fin = np.count_nonzero(new_finalized) print('\tNewly finalized pixels: %d' % num_new_fin) if num_new_fin == 0: break status_mask[new_finalized] = 2 for y in range(depth.shape[0]): for x in range(depth.shape[1]): if not new_finalized[y, x]: continue intensity_weight = get_intensity_weight(img, y, x, win_hsize) weight_patch = intensity_weight * dist_filter weight_map[y - win_hsize : y + win_hsize + 1, \ x - win_hsize : x + win_hsize + 1] += weight_patch new_expandable = (weight_map > EXPAND_THRESH) & (status_mask == 1) print('\tNewly expandable pixels: %d' % np.count_nonzero(new_expandable)) for y in range(depth.shape[0]): for x in range(depth.shape[1]): if not new_expandable[y, x]: continue ready_patch = status_mask[\ y - win_hsize : y + win_hsize + 1, \ x - win_hsize : x + win_hsize + 1] == 2 get_intensity_weight(img, y, x, win_hsize) conf_patch = adj_conf[\ y - win_hsize : y + win_hsize + 1, \ x - win_hsize : x + win_hsize + 1] depth_patch = depth[\ y - win_hsize : y + win_hsize + 1, \ x - win_hsize : x + win_hsize + 1] weight_patch = ready_patch * dist_filter * intensity_weight d = np.sum(weight_patch * conf_patch * depth_patch) / \ np.sum(weight_patch * conf_patch) c = np.sum(weight_patch * conf_patch) / \ np.sum(weight_patch) depth[y, x] = d adj_conf[y, x] = c * CONF_DECAY viz.normalize_and_draw(depth, './doll_data_out/unsmoothened_depth.jpg', 0) norm_depth, scale, shift = utils.normalize(depth, 0, 255.0) smooth_depth = np.array(norm_depth, np.uint8) smooth_depth = cv2.fastNlMeansDenoising(smooth_depth, \ h=DEPTH_SMOOTH_DENOISE_STRENGTH) smooth_depth = np.array(smooth_depth, np.float32) smooth_depth = (smooth_depth * scale) + shift return smooth_depth
B_mat.transpose()) + np.random.randn(n_date, n_name) * sd_idio print(B_mat) f2_mat = f_mat**2 print(cpt.cpt_detect_minseglen_PELT(1, 1, f2_mat, n_factor, 5)) return y_mat def normalize(y_mat): return (y_mat - y_mat.mean(axis=0)) / y_mat.std(axis=0) if __name__ == "__main__": y_mat = data_toy_simulation() #y_mat = np.loadtxt(open("/tmp/y_mat.csv", "rb"), delimiter=",") y_mat = utils.normalize(y_mat) model = FactorModel(y_mat, k_max=20) model.cpt_config() model.param_init() delta0_steps = [1, 5, 10, 20] for delta0 in delta0_steps: model.delta0_reconfig(delta0) model.em_iterator(200, True) print(model.k_plus) print(model.Beta[:, :model.k_plus]) model.em_iterator(200, False) print(model.k_plus)
def msg(self, channel, message): irc.IRCClient.msg(self, channel, normalize(message))
def notice(self, user, message): irc.IRCClient.notice(self, user, normalize(message))
def test_normalize(source, expected): assert normalize(source) == expected
self.backpropagation(x, y) if (ind+1) % self.mbs == 0: self.update_gradients() self.update_gradients() print('ce loss', ce) print('train_acc', yt*100/X.shape[0]) # ,'val_acc', self.accuracy\ # (val_set[0],val_set[1])) img = np.array(cv2.imread('img.jpg', cv2.IMREAD_GRAYSCALE)) # print(img.shape) # img = Conv2D(filters=2).filter(norm(img)) # print(img.shape) # #display(img[:,:,1]) # img = Maxpool().filter(norm(img)) # print(img.shape) # #display(img[:,:,1]) # y = Dense(units=10, input_shape=(113*113*2)).forward(img.flatten().reshape(25538, 1)) # print(y.shape) X_train, y_train, X_val, y_val = load_mnist(reshape=True, n_rows=1000) model = Model().sequential([Conv2D(filters=2), Maxpool(), Flatten(), Dense(10)]) model.compile(X_train[0]) X_train = normalize(X_train) # display(X_train[0]) model.fit(X_train, y_train, mbs=1, epoch=10)
def test_re_kids(src): assert kids_finder(normalize(src))
def render(self, objects): camera = self.camera ratio = float(self.width) / self.height screen = (-1, 1 / ratio, 1, -1 / ratio) # left, top, right, bottom for i, y in enumerate(np.linspace(screen[1], screen[3], self.height)): for j, x in enumerate(np.linspace(screen[0], screen[2], self.width)): # screen is on origin pixel = np.array([x, y, 0]) # origin = np.array([x, y, 1]) origin = camera direction = utils.normalize(pixel - origin) color = np.zeros((3)) reflection = 1 for k in range(self.max_depth): # check for intersections nearest_object, min_distance = utils.nearest_intersected_object( objects, origin, direction) if nearest_object is None: break intersection = origin + min_distance * direction # normal_to_surface = utils.normalize(intersection - nearest_object.center) normal_to_surface = nearest_object.normal_to_surface( intersection) shifted_point = intersection + 1e-5 * normal_to_surface for light in self.lights: intersection_to_light = utils.normalize( light['position'] - shifted_point) _, min_distance = utils.nearest_intersected_object( objects, shifted_point, intersection_to_light) intersection_to_light_distance = np.linalg.norm( light['position'] - intersection) is_shadowed = min_distance < intersection_to_light_distance if is_shadowed: break illumination = np.zeros((3)) # ambiant illumination += nearest_object.material.ambient * light[ 'ambient'] # diffuse illumination += nearest_object.material.diffuse * light[ 'diffuse'] * np.dot(intersection_to_light, normal_to_surface) # specular intersection_to_camera = utils.normalize(camera - intersection) H = utils.normalize(intersection_to_light + intersection_to_camera) illumination += nearest_object.material.specular * light[ 'specular'] * np.dot(normal_to_surface, H)**( nearest_object.material.shininess / 4) # reflection color += reflection * illumination reflection *= nearest_object.material.reflection origin = shifted_point direction = utils.reflected(direction, normal_to_surface) # image[i, j] = np.clip(color, 0, 1) self.display.set_at((j, i), utils.toRgb(color)) print("%d/%d" % (i + 1, self.height)) pygame.display.flip()