Beispiel #1
0
optimizer = tf.keras.optimizers.SGD(lr=5e-5, momentum=0.9)
model.compile(loss=tf.keras.losses.Huber(),
              optimizer=optimizer,
              metrics=["mae"])
history = model.fit(dataset, epochs=400)

forecast = []
for time in range(len(series) - window_size):
    forecast.append(model.predict(series[time:time + window_size][np.newaxis]))

forecast = forecast[split_time - window_size:]
results = np.array(forecast)[:, 0, 0]

plt.figure(figsize=(10, 6))

plot_series(time_valid, x_valid)
plot_series(time_valid, results)
plt.show()

print(tf.keras.metrics.mean_absolute_error(x_valid, results).numpy())

import matplotlib.image as mpimg
import matplotlib.pyplot as plt

#-----------------------------------------------------------
# Retrieve a list of list results on training and test data
# sets for each training epoch
#-----------------------------------------------------------
mae = history.history['mae']
loss = history.history['loss']
time_valid = time[split_time:]
x_valid = series[split_time:]

from sklearn.preprocessing import StandardScaler, RobustScaler, MinMaxScaler, Normalizer

scaler = StandardScaler()
scaler = RobustScaler()
scaler = MinMaxScaler()
scaler = Normalizer()

print(x_train)
print(x_valid)
x_train = scaler.fit_transform([x_train])[0]
x_valid = scaler.fit_transform([x_valid])[0]

plot_series(time_train, x_train)
plot_series(time_valid, x_valid)
print(x_train)
print(x_valid)
# Hyper parameters
window_size = 24
batch_size = 32
shuffle_buffer_size = 500


def windowed_dataset(series, window_size, batch_size, shuffle_buffer):
    dataset = tf.data.Dataset.from_tensor_slices(series)
    dataset = dataset.window(window_size + 1, shift=1, drop_remainder=True)
    dataset = dataset.flat_map(lambda window: window.batch(window_size + 1))
    dataset = dataset.shuffle(shuffle_buffer).map(lambda window:
                                                  (window[:-1], window[-1:]))
amplitude = 40
slope = 0.05
noise_level = 5

series = baseline + trend(time, slope) + seasonality(
    time, period=365, amplitude=amplitude)
series += noise(time, noise_level, seed=42)

split_time = 1000
time_train = time[:split_time]
x_train = series[:split_time]
time_valid = time[split_time:]
x_valid = series[split_time:]

plt.figure(figsize=(10, 6))
plot_series(time_train, x_train)
#plt.show()

plt.figure(figsize=(10, 6))
plot_series(time_valid, x_valid)

# Naive Forecast:

naive_forecast = series[split_time - 1:-1]
plt.figure(figsize=(10, 6))
plot_series(time_valid, x_valid)
plot_series(time_valid, naive_forecast)

plt.figure(figsize=(10, 6))
plot_series(time_valid, x_valid, start=0, end=150)
plot_series(time_valid, naive_forecast, start=1, end=151)
import os

os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

from lib.utils import plot_series, trend, seasonality, noise

time = np.arange(4 * 365 + 1, dtype="float32")

baseline = 10
amplitude = 40
slope = 0.05
noise_level = 5

series = baseline + trend(time, slope) + seasonality(time, period=365, amplitude=amplitude)
series += noise(time, noise_level, seed=42)
plot_series(time, series)

split_time = 1000

x_train = series[:split_time]
x_valid = series[split_time:]

time_train = time[:split_time]
time_valid = time[split_time:]

ws = 20
bs = 20
sb = 1000


def windowed_dataset(series, window_size, batch_size, shuffle_buffer):
Beispiel #5
0
import pandas as pd
import tensorflow as tf
from lib.utils import plot_series
import numpy as np
import matplotlib.pyplot as plt


path = "https://raw.githubusercontent.com/shravanc/datasets/master/nov_time_series.csv"

df = pd.read_csv(path) #, names=["series"])
series = df['series'].values
time   = list(range(0, len(series)))

values = df['series'].values
dataset = tf.data.Dataset.from_tensor_slices(values)
dataset = dataset.window(25, shift=1, drop_remainder=True)
dataset = dataset.flat_map(lambda window: window.batch(25))
dataset = dataset.map(lambda window: (window[:-1], window[-1: ]))
for x, y in dataset:
  print(x.numpy(), y.numpy())
  break


plt.figure(figsize=(15, 10))
plot_series(time, series)
plt.show()