ref_node = getNode("/config/ned_reference", True) ref = [ ref_node.getFloat('lat_deg'), ref_node.getFloat('lon_deg'), ref_node.getFloat('alt_m') ] # setup SRTM ground interpolator sss = SRTM.NEDGround(ref, 6000, 6000, 30) print("Loading optimized match points ...") matches = pickle.load( open(os.path.join(proj.analysis_dir, "matches_grouped"), "rb")) # load the group connections within the image set groups = Groups.load(proj.analysis_dir) # initialize temporary structures for vanity stats for image in proj.image_list: image.sum_values = 0.0 image.sum_count = 0.0 image.max_z = -9999.0 image.min_z = 9999.0 # elevation stats print("Computing stats...") ned_list = [] for match in matches: if match[1] == args.group: # used by current group ned_list.append(match[0]) avg = -np.mean(np.array(ned_list)[:, 2])
def match_trig(project_dir, match_trig_options): group = match_trig_options[0] method = match_trig_options[1] proj = ProjectMgr.ProjectMgr(project_dir) proj.load_images_info() source = 'matches_grouped' print("Loading source matches:", source) matches = pickle.load(open(os.path.join(proj.analysis_dir, source), 'rb')) # load the group connections within the image set groups = Groups.load(proj.analysis_dir) print('Group sizes:', end=" ") for group in groups: print(len(group), end=" ") print() if method == 'triangulate': K = proj.cam.get_K(optimized=True) dist_coeffs = np.array(proj.cam.get_dist_coeffs(optimized=True)) else: K = proj.cam.get_K(optimized=False) IK = np.linalg.inv(K) do_sanity_check = False # assume global K and distcoeff set earlier def undistort(uv_orig): # convert the point into the proper format for opencv uv_raw = np.zeros((1, 1, 2), dtype=np.float32) uv_raw[0][0] = (uv_orig[0], uv_orig[1]) # do the actual undistort uv_new = cv2.undistortPoints(uv_raw, K, dist_coeffs, P=K) # print(uv_orig, type(uv_new), uv_new) return uv_new[0][0] if method == 'srtm': # lookup ned reference ref_node = getNode("/config/ned_reference", True) ref = [ ref_node.getFloat('lat_deg'), ref_node.getFloat('lon_deg'), ref_node.getFloat('alt_m') ] # setup SRTM ground interpolator sss = SRTM.NEDGround(ref, 3000, 3000, 30) # for each image lookup the SRTM elevation under the camera print("Looking up SRTM base elevation for each image location...") for image in proj.image_list: ned, ypr, quat = image.get_camera_pose() image.base_elev = sss.interp([ned[0], ned[1]])[0] # print(image.name, image.base_elev) print("Estimating initial projection for each feature...") bad_count = 0 bad_indices = [] for i, match in enumerate(tqdm(matches)): sum = np.zeros(3) array = [] # fixme: temp/debug for m in match[2:]: image = proj.image_list[m[0]] cam2body = image.get_cam2body() body2ned = image.get_body2ned() ned, ypr, quat = image.get_camera_pose() uv_list = [m[1]] # just one uv element vec_list = proj.projectVectors(IK, body2ned, cam2body, uv_list) v = vec_list[0] if v[2] > 0.0: d_proj = -(ned[2] + image.base_elev) factor = d_proj / v[2] n_proj = v[0] * factor e_proj = v[1] * factor p = [ned[0] + n_proj, ned[1] + e_proj, ned[2] + d_proj] # print(' ', p) sum += np.array(p) array.append(p) else: print('vector projected above horizon.') match[0] = (sum / len(match[2:])).tolist() # print(match[0]) if do_sanity_check: # crude sanity check ok = True for p in array: dist = np.linalg.norm(np.array(match[0]) - np.array(p)) if dist > 100: ok = False if not ok: bad_count += 1 bad_indices.append(i) print('match:', i, match[0]) for p in array: dist = np.linalg.norm(np.array(match[0]) - np.array(p)) print(' ', dist, p) if do_sanity_check: print('bad count:', bad_count) print('deleting bad matches...') bad_indices.reverse() for i in bad_indices: del matches[i] elif method == 'triangulate': for i, match in enumerate(matches): if match[1] == group: # used in current group # print(match) points = [] vectors = [] for m in match[2:]: if proj.image_list[m[0]].name in groups[group]: # print(m) image = proj.image_list[m[0]] cam2body = image.get_cam2body() body2ned = image.get_body2ned() ned, ypr, quat = image.get_camera_pose(opt=True) uv_list = [undistort(m[1])] # just one uv element vec_list = proj.projectVectors(IK, body2ned, cam2body, uv_list) points.append(ned) vectors.append(vec_list[0]) # print(' ', image.name) # print(' ', uv_list) # print(' ', vec_list) if len(points) >= 2: # print('points:', points) # print('vectors:', vectors) p = LineSolver.ls_lines_intersection( points, vectors, transpose=True).tolist() # print('result:', p, p[0]) print(i, match[0], '>>>', end=" ") match[0] = [p[0][0], p[1][0], p[2][0]] if p[2][0] > 0: print("WHOA!") print(match[0]) print("Writing:", source) pickle.dump(matches, open(os.path.join(proj.analysis_dir, source), "wb"))
default=1.0, help='max feature angle') args = parser.parse_args() proj = ProjectMgr.ProjectMgr(args.project) proj.load_area_info(args.area) area_dir = os.path.join(args.project, args.area) #source = 'matches_direct' source = 'matches_grouped' print("Loading matches:", source) matches = pickle.load(open(os.path.join(area_dir, source), "rb")) print('Number of original features:', len(matches)) # load the group connections within the image set groups = Groups.load(area_dir) print('Group sizes:', end=" ") for group in groups: print(len(group), end=" ") print() def compute_angle(ned1, ned2, ned3): vec1 = np.array(ned3) - np.array(ned1) vec2 = np.array(ned3) - np.array(ned2) n1 = np.linalg.norm(vec1) n2 = np.linalg.norm(vec2) denom = n1 * n2 if abs(denom - 0.000001) > 0: try: tmp = np.dot(vec1, vec2) / denom
def render(project_dir, render_options): group_id = render_options[0] texture_resolution = render_options[1] srtm = render_options[2] ground = render_options[3] direct = render_options[4] proj = ProjectMgr.ProjectMgr(project_dir) proj.load_images_info() # lookup ned reference ref_node = getNode("/config/ned_reference", True) ref = [ ref_node.getFloat('lat_deg'), ref_node.getFloat('lon_deg'), ref_node.getFloat('alt_m') ] # setup SRTM ground interpolator sss = SRTM.NEDGround(ref, 6000, 6000, 30) print("Loading optimized match points ...") matches = pickle.load( open(os.path.join(proj.analysis_dir, "matches_grouped"), "rb")) # load the group connections within the image set groups = Groups.load(proj.analysis_dir) # initialize temporary structures for vanity stats for image in proj.image_list: image.sum_values = 0.0 image.sum_count = 0.0 image.max_z = -9999.0 image.min_z = 9999.0 # elevation stats print("Computing stats...") ned_list = [] for match in matches: if match[1] == group_id: # used by current group ned_list.append(match[0]) avg = -np.mean(np.array(ned_list)[:, 2]) std = np.std(np.array(ned_list)[:, 2]) print("Average elevation: %.2f" % avg) print("Standard deviation: %.2f" % std) # sort through points print('Reading feature locations from optimized match points ...') raw_points = [] raw_values = [] for match in matches: if match[1] == group_id: # used by current group ned = match[0] diff = abs(-ned[2] - avg) if diff < 10 * std: raw_points.append([ned[1], ned[0]]) raw_values.append(ned[2]) for m in match[2:]: if proj.image_list[m[0]].name in groups[group_id]: image = proj.image_list[m[0]] z = -ned[2] image.sum_values += z image.sum_count += 1 if z < image.min_z: image.min_z = z #print(min_z, match) if z > image.max_z: image.max_z = z #print(max_z, match) else: print("Discarding match with excessive altitude:", match) # save the surface definition as a separate file models_dir = os.path.join(proj.analysis_dir, 'models') if not os.path.exists(models_dir): print("Notice: creating models directory =", models_dir) os.makedirs(models_dir) surface = {'points': raw_points, 'values': raw_values} pickle.dump( surface, open(os.path.join(proj.analysis_dir, 'models', 'surface.bin'), "wb")) print('Generating Delaunay mesh and interpolator ...') global_tri_list = scipy.spatial.Delaunay(np.array(raw_points)) interp = scipy.interpolate.LinearNDInterpolator(global_tri_list, raw_values) no_extrapolate = True def intersect2d(ned, v, avg_ground): p = ned[:] # copy # sanity check (always assume camera pose is above ground!) if v[2] <= 0.0: return p eps = 0.01 count = 0 #print("start:", p) #print("vec:", v) #print("ned:", ned) tmp = interp([p[1], p[0]])[0] if no_extrapolate or not np.isnan(tmp): surface = tmp else: surface = avg_ground error = abs(p[2] - surface) #print("p=%s surface=%s error=%s" % (p, surface, error)) while error > eps and count < 25: d_proj = -(ned[2] - surface) factor = d_proj / v[2] n_proj = v[0] * factor e_proj = v[1] * factor #print(" proj = %s %s" % (n_proj, e_proj)) p = [ned[0] + n_proj, ned[1] + e_proj, ned[2] + d_proj] #print(" new p:", p) tmp = interp([p[1], p[0]])[0] if no_extrapolate or not np.isnan(tmp): surface = tmp error = abs(p[2] - surface) #print(" p=%s surface=%.2f error = %.3f" % (p, surface, error)) count += 1 #print("surface:", surface) #if np.isnan(surface): # #print(" returning nans") # return [np.nan, np.nan, np.nan] dy = ned[0] - p[0] dx = ned[1] - p[1] dz = ned[2] - p[2] dist = math.sqrt(dx * dx + dy * dy) angle = math.atan2(-dz, dist) * r2d # relative to horizon if angle < 30: print(" returning high angle nans:", angle) return [np.nan, np.nan, np.nan] else: return p def intersect_vectors(ned, v_list, avg_ground): pt_list = [] for v in v_list: p = intersect2d(ned, v.flatten(), avg_ground) pt_list.append(p) return pt_list for image in proj.image_list: if image.sum_count > 0: image.z_avg = image.sum_values / float(image.sum_count) print(image.name, 'avg elev:', image.z_avg) else: image.z_avg = 0 # compute the uv grid for each image and project each point out into # ned space, then intersect each vector with the srtm / ground / # delauney surface. #for group in groups: if True: group = groups[group_id] #if len(group) < 3: # continue for name in group: image = proj.findImageByName(name) print(image.name, image.z_avg) width, height = proj.cam.get_image_params() # scale the K matrix if we have scaled the images K = proj.cam.get_K(optimized=True) IK = np.linalg.inv(K) grid_list = [] u_list = np.linspace(0, width, ac3d_steps + 1) v_list = np.linspace(0, height, ac3d_steps + 1) #print "u_list:", u_list #print "v_list:", v_list for v in v_list: for u in u_list: grid_list.append([u, v]) #print 'grid_list:', grid_list image.distorted_uv = proj.redistort(grid_list, optimized=True) if direct: proj_list = proj.projectVectors(IK, image.get_body2ned(), image.get_cam2body(), grid_list) else: #print(image.get_body2ned(opt=True)) proj_list = proj.projectVectors(IK, image.get_body2ned(opt=True), image.get_cam2body(), grid_list) #print 'proj_list:', proj_list if direct: ned, ypr, quat = image.get_camera_pose() else: ned, ypr, quat = image.get_camera_pose(opt=True) #print('cam orig:', image.camera_pose['ned'], 'optimized:', ned) if ground: pts_ned = proj.intersectVectorsWithGroundPlane( ned, ground, proj_list) elif srtm: pts_ned = sss.interpolate_vectors(ned, proj_list) elif False: # this never seemed that productive print(image.name, image.z_avg) pts_ned = proj.intersectVectorsWithGroundPlane( ned, image.z_avg, proj_list) elif True: # intersect with our polygon surface approximation pts_ned = intersect_vectors(ned, proj_list, -image.z_avg) elif False: # (moving away from the binned surface approach in this # script towards the above delauney interpolation # approach) # intersect with 2d binned surface approximation pts_ned = bin2d.intersect_vectors(ned, proj_list, -image.z_avg) #print(image.name, "pts_3d (ned):\n", pts_ned) # convert ned to xyz and stash the result for each image image.grid_list = [] for p in pts_ned: image.grid_list.append([p[1], p[0], -p[2]]) # generate the panda3d egg models dir_node = getNode('/config/directories', True) img_src_dir = dir_node.getString('images_source') Panda3d.generate_from_grid(proj, groups[group_id], src_dir=img_src_dir, analysis_dir=proj.analysis_dir, resolution=texture_resolution)
def mre(project_dir, mre_options): group_id = mre_options[0] stddev = mre_options[1] initial_pose = mre_options[2] strong = mre_options[3] interactive = mre_options[4] proj = ProjectMgr.ProjectMgr(project_dir) proj.load_images_info() # a value of 2 let's pairs exist which can be trouble ... matcher_node = getNode('/config/matcher', True) min_chain_len = matcher_node.getInt("min_chain_len") if min_chain_len == 0: min_chain_len = 3 print("Notice: min_chain_len is:", min_chain_len) source = 'matches_grouped' print("Loading matches:", source) matches = pickle.load(open(os.path.join(proj.analysis_dir, source), "rb")) print('Number of original features:', len(matches)) # load the group connections within the image set groups = Groups.load(proj.analysis_dir) print('Group sizes:', end=" ") for group in groups: print(len(group), end=" ") print() opt = Optimizer.Optimizer(project_dir) if initial_pose: opt.setup(proj, groups, group_id, matches, optimized=False) else: opt.setup(proj, groups, group_id, matches, optimized=True) x0 = np.hstack((opt.camera_params.ravel(), opt.points_3d.ravel(), opt.K[0, 0], opt.K[0, 2], opt.K[1, 2], opt.distCoeffs)) error = opt.fun(x0, opt.n_cameras, opt.n_points, opt.by_camera_point_indices, opt.by_camera_points_2d) print('cameras:', opt.n_cameras) print(len(error)) mre = np.mean(np.abs(error)) std = np.std(error) max = np.amax(np.abs(error)) print('mre: %.3f std: %.3f max: %.2f' % (mre, std, max)) print('Tabulating results...') results = [] results_by_cam = [] count = 0 for i, cam in enumerate(opt.camera_params.reshape( (opt.n_cameras, opt.ncp))): # print(i, opt.camera_map_fwd[i]) orig_cam_index = opt.camera_map_fwd[i] cam_errors = [] # print(count, opt.by_camera_point_indices[i]) for j in opt.by_camera_point_indices[i]: match = matches[opt.feat_map_rev[j]] match_index = 0 #print(orig_cam_index, match) for k, p in enumerate(match[2:]): if p[0] == orig_cam_index: match_index = k # print(match[0], opt.points_3d[j*3:j*3+3]) e = error[count * 2:count * 2 + 2] #print(count, e, np.linalg.norm(e)) #if abs(e[0]) > 5*std or abs(e[1]) > 5*std: # print("big") cam_errors.append(np.linalg.norm(e)) results.append( [np.linalg.norm(e), opt.feat_map_rev[j], match_index]) count += 1 if len(cam_errors): results_by_cam.append([ np.mean(np.abs(np.array(cam_errors))), np.amax(np.abs(np.array(cam_errors))), proj.image_list[orig_cam_index].name ]) else: results_by_cam.append( [9999.0, 9999.0, proj.image_list[orig_cam_index].name]) #print(proj.image_list[orig_cam_index].name, ':', # np.mean(np.abs(np.array(cam_errors)))) print("Report of images that aren't fitting well:") results_by_cam = sorted(results_by_cam, key=lambda fields: fields[0], reverse=True) for line in results_by_cam: if line[0] > mre + 3 * std: print("%s - mean: %.3f max: %.3f" % (line[2], line[0], line[1])) for line in results_by_cam: if line[0] > mre + 3 * std: print(line[2], end=" ") print() error_list = sorted(results, key=lambda fields: fields[0], reverse=True) def mark_outliers(error_list, trim_stddev): print("Marking outliers...") sum = 0.0 count = len(error_list) # numerically it is better to sum up a list of floatting point # numbers from smallest to biggest (error_list is sorted from # biggest to smallest) for line in reversed(error_list): sum += line[0] # stats on error values print(" computing stats...") mre = sum / count stddev_sum = 0.0 for line in error_list: error = line[0] stddev_sum += (mre - error) * (mre - error) stddev = math.sqrt(stddev_sum / count) print("mre = %.4f stddev = %.4f" % (mre, stddev)) # mark match items to delete print(" marking outliers...") mark_count = 0 for line in error_list: # print "line:", line if line[0] > mre + stddev * trim_stddev: cull.mark_feature(matches, line[1], line[2], line[0]) mark_count += 1 return mark_count if interactive: # interactively pick outliers mark_list = cull.show_outliers(error_list, matches, proj.image_list) # mark selection cull.mark_using_list(mark_list, matches) mark_sum = len(mark_list) else: # trim outliers by some # of standard deviations high mark_sum = mark_outliers(error_list, stddev) # after marking the bad matches, now count how many remaining features # show up in each image for i in proj.image_list: i.feature_count = 0 for i, match in enumerate(matches): for j, p in enumerate(match[2:]): if p[1] != [-1, -1]: image = proj.image_list[p[0]] image.feature_count += 1 purge_weak_images = False if purge_weak_images: # make a dict of all images with less than 25 feature matches weak_dict = {} for i, img in enumerate(proj.image_list): # print img.name, img.feature_count if img.feature_count > 0 and img.feature_count < 25: weak_dict[i] = True print('weak images:', weak_dict) # mark any features in the weak images list for i, match in enumerate(matches): #print 'before:', match for j, p in enumerate(match[2:]): if p[0] in weak_dict: match[j + 1] = [-1, -1] mark_sum += 1 if mark_sum > 0: print('Outliers removed from match lists:', mark_sum) result = input('Save these changes? (y/n):') if result == 'y' or result == 'Y': cull.delete_marked_features(matches, min_chain_len, strong=strong) # write out the updated match dictionaries print("Writing:", source) pickle.dump(matches, open(os.path.join(proj.analysis_dir, source), "wb"))
def colocated(project_dir, colocated_options): group_id = colocated_options[0] min_angle = colocated_options[1] r2d = 180.0 / math.pi proj = ProjectMgr.ProjectMgr(project_dir) proj.load_images_info() # a value of 2 let's pairs exist which can be trouble ... matcher_node = getNode('/config/matcher', True) min_chain_len = matcher_node.getInt("min_chain_len") if min_chain_len == 0: min_chain_len = 3 print("Notice: min_chain_len is:", min_chain_len) #source = 'matches_direct' source = 'matches_grouped' print("Loading matches:", source) matches = pickle.load(open(os.path.join(proj.analysis_dir, source), "rb")) print('Number of original features:', len(matches)) # load the group connections within the image set groups = Groups.load(proj.analysis_dir) print('Group sizes:', end=" ") for group in groups: print(len(group), end=" ") print() def compute_angle(ned1, ned2, ned3): vec1 = np.array(ned3) - np.array(ned1) vec2 = np.array(ned3) - np.array(ned2) n1 = np.linalg.norm(vec1) n2 = np.linalg.norm(vec2) denom = n1 * n2 if abs(denom - 0.000001) > 0: try: tmp = np.dot(vec1, vec2) / denom if tmp > 1.0: tmp = 1.0 return math.acos(tmp) except: print('vec1:', vec1, 'vec2', vec2, 'dot:', np.dot(vec1, vec2)) print('denom:', denom) return 0 else: return 0 print("Scanning match pair angles:") mark_list = [] for k, match in enumerate(tqdm(matches)): if match[1] == group_id: # used by current group for i, m1 in enumerate(match[2:]): for j, m2 in enumerate(match[2:]): if i < j: i1 = proj.image_list[m1[0]] i2 = proj.image_list[m2[0]] if i1.name in groups[group_id] and i2.name in groups[ group_id]: ned1, ypr1, q1 = i1.get_camera_pose(opt=True) ned2, ypr2, q2 = i2.get_camera_pose(opt=True) quick_approx = False if quick_approx: # quick hack angle approximation avg = (np.array(ned1) + np.array(ned2)) * 0.5 y = np.linalg.norm( np.array(ned2) - np.array(ned1)) x = np.linalg.norm(avg - np.array(match[0])) angle_deg = math.atan2(y, x) * r2d else: angle_deg = compute_angle( ned1, ned2, match[0]) * r2d if angle_deg < min_angle: mark_list.append([k, i]) # Pairs with very small average angles between each feature and camera # location indicate closely located camera poses and these cause # problems because very small changes in camera pose lead to very # large changes in feature location. # mark selection cull.mark_using_list(mark_list, matches) mark_sum = len(mark_list) mark_sum = len(mark_list) if mark_sum > 0: print('Outliers to remove from match lists:', mark_sum) result = input('Save these changes? (y/n):') if result == 'y' or result == 'Y': cull.delete_marked_features(matches, min_chain_len) # write out the updated match dictionaries print("Writing original matches:", source) pickle.dump(matches, open(os.path.join(proj.analysis_dir, source), "wb"))
def optmizer(project_dir, optmize_options): group_id = optmize_options[0] refine = optmize_options[1] cam_calibration = optmize_options[2] d2r = math.pi / 180.0 r2d = 180.0 / math.pi # return a 3d affine tranformation between current camera locations # and original camera locations. def get_recenter_affine(src_list, dst_list): print('get_recenter_affine():') src = [[], [], [], []] # current camera locations dst = [[], [], [], []] # original camera locations for i in range(len(src_list)): src_ned = src_list[i] src[0].append(src_ned[0]) src[1].append(src_ned[1]) src[2].append(src_ned[2]) src[3].append(1.0) dst_ned = dst_list[i] dst[0].append(dst_ned[0]) dst[1].append(dst_ned[1]) dst[2].append(dst_ned[2]) dst[3].append(1.0) # print("{} <-- {}".format(dst_ned, src_ned)) A = transformations.superimposition_matrix(src, dst, scale=True) print("A:\n", A) return A # transform a point list given an affine transform matrix def transform_points(A, pts_list): src = [[], [], [], []] for p in pts_list: src[0].append(p[0]) src[1].append(p[1]) src[2].append(p[2]) src[3].append(1.0) dst = A.dot(np.array(src)) result = [] for i in range(len(pts_list)): result.append( [float(dst[0][i]), float(dst[1][i]), float(dst[2][i])]) return result proj = ProjectMgr.ProjectMgr(project_dir) proj.load_images_info() source_file = os.path.join(proj.analysis_dir, 'matches_grouped') print('Match file:', source_file) matches = pickle.load(open(source_file, "rb")) print('Match features:', len(matches)) # load the group connections within the image set groups = Groups.load(proj.analysis_dir) # sort from smallest to largest: groups.sort(key=len) opt = Optimizer.Optimizer(project_dir) opt.setup(proj, groups, group_id, matches, optimized=refine, cam_calib=cam_calibration) cameras, features, cam_index_map, feat_index_map, fx_opt, fy_opt, cu_opt, cv_opt, distCoeffs_opt = opt.run( ) # mark all the optimized poses as invalid for image in proj.image_list: opt_cam_node = image.node.getChild('camera_pose_opt', True) opt_cam_node.setBool('valid', False) for i, cam in enumerate(cameras): image_index = cam_index_map[i] image = proj.image_list[image_index] ned_orig, ypr_orig, quat_orig = image.get_camera_pose() print('optimized cam:', cam) rvec = cam[0:3] tvec = cam[3:6] Rned2cam, jac = cv2.Rodrigues(rvec) cam2body = image.get_cam2body() Rned2body = cam2body.dot(Rned2cam) Rbody2ned = np.matrix(Rned2body).T (yaw, pitch, roll) = transformations.euler_from_matrix(Rbody2ned, 'rzyx') #print "orig ypr =", image.camera_pose['ypr'] #print "new ypr =", [yaw/d2r, pitch/d2r, roll/d2r] pos = -np.matrix(Rned2cam).T * np.matrix(tvec).T newned = pos.T[0].tolist()[0] print(image.name, ned_orig, '->', newned, 'dist:', np.linalg.norm(np.array(ned_orig) - np.array(newned))) image.set_camera_pose(newned, yaw * r2d, pitch * r2d, roll * r2d, opt=True) image.placed = True proj.save_images_info() print('Updated the optimized camera poses.') # update and save the optimized camera calibration proj.cam.set_K(fx_opt, fy_opt, cu_opt, cv_opt, optimized=True) proj.cam.set_dist_coeffs(distCoeffs_opt.tolist(), optimized=True) proj.save() # compare original camera locations with optimized camera locations and # derive a transform matrix to 'best fit' the new camera locations # over the original ... trusting the original group gps solution as # our best absolute truth for positioning the system in world # coordinates. # # each optimized group needs a separate/unique fit matches_opt = list(matches) # shallow copy refit_group_orientations = True if refit_group_orientations: group = groups[group_id] print('refitting group size:', len(group)) src_list = [] dst_list = [] # only consider images that are in the current group for name in group: image = proj.findImageByName(name) ned, ypr, quat = image.get_camera_pose(opt=True) src_list.append(ned) ned, ypr, quat = image.get_camera_pose() dst_list.append(ned) A = get_recenter_affine(src_list, dst_list) # extract the rotation matrix (R) from the affine transform scale, shear, angles, trans, persp = transformations.decompose_matrix( A) print(' scale:', scale) print(' shear:', shear) print(' angles:', angles) print(' translate:', trans) print(' perspective:', persp) R = transformations.euler_matrix(*angles) print("R:\n{}".format(R)) # fixme (just group): # update the optimized camera locations based on best fit camera_list = [] # load optimized poses for image in proj.image_list: if image.name in group: ned, ypr, quat = image.get_camera_pose(opt=True) else: # this is just fodder to match size/index of the lists ned, ypr, quat = image.get_camera_pose() camera_list.append(ned) # refit new_cams = transform_points(A, camera_list) # update position for i, image in enumerate(proj.image_list): if not image.name in group: continue ned, [y, p, r], quat = image.get_camera_pose(opt=True) image.set_camera_pose(new_cams[i], y, p, r, opt=True) proj.save_images_info() if True: # update optimized pose orientation. dist_report = [] for i, image in enumerate(proj.image_list): if not image.name in group: continue ned_orig, ypr_orig, quat_orig = image.get_camera_pose() ned, ypr, quat = image.get_camera_pose(opt=True) Rbody2ned = image.get_body2ned(opt=True) # update the orientation with the same transform to keep # everything in proper consistent alignment newRbody2ned = R[:3, :3].dot(Rbody2ned) (yaw, pitch, roll) = transformations.euler_from_matrix( newRbody2ned, 'rzyx') image.set_camera_pose(new_cams[i], yaw * r2d, pitch * r2d, roll * r2d, opt=True) dist = np.linalg.norm( np.array(ned_orig) - np.array(new_cams[i])) print('image: {}'.format(image.name)) print(' orig pos: {}'.format(ned_orig)) print(' fit pos: {}'.format(new_cams[i])) print(' dist moved: {}'.format(dist)) dist_report.append((dist, image.name)) proj.save_images_info() dist_report = sorted(dist_report, key=lambda fields: fields[0], reverse=False) print('Image movement sorted lowest to highest:') for report in dist_report: print('{} dist: {}'.format(report[1], report[0])) # tranform the optimized point locations using the same best # fit transform for the camera locations. new_feats = transform_points(A, features) # update any of the transformed feature locations that have # membership in the currently processing group back to the # master match structure. Note we process groups in order of # little to big so if a match is in more than one group it # follows the larger group. for i, feat in enumerate(new_feats): match_index = feat_index_map[i] match = matches_opt[match_index] in_group = False for m in match[2:]: if proj.image_list[m[0]].name in group: in_group = True break if in_group: #print(' before:', match) match[0] = feat #print(' after:', match) else: # not refitting group orientations, just copy over optimized # coordinates for i, feat in enumerate(features): match_index = feat_index_map[i] match = matches_opt[match_index] match[0] = feat # write out the updated match_dict print('Updating matches file:', len(matches_opt), 'features') pickle.dump(matches_opt, open(source_file, 'wb')) #proj.cam.set_K(fx_opt/scale[0], fy_opt/scale[0], cu_opt/scale[0], cv_opt/scale[0], optimized=True) #proj.save() # temp write out just the points so we can plot them with gnuplot f = open(os.path.join(proj.analysis_dir, 'opt-plot.txt'), 'w') for m in matches_opt: try: f.write('%.2f %.2f %.2f\n' % (m[0][0], m[0][1], m[0][2])) except: pass f.close() # temp write out direct and optimized camera positions f1 = open(os.path.join(proj.analysis_dir, 'cams-direct.txt'), 'w') f2 = open(os.path.join(proj.analysis_dir, 'cams-opt.txt'), 'w') for name in groups[group_id]: image = proj.findImageByName(name) ned1, ypr1, quat1 = image.get_camera_pose() ned2, ypr2, quat2 = image.get_camera_pose(opt=True) f1.write('%.2f %.2f %.2f\n' % (ned1[1], ned1[0], -ned1[2])) f2.write('%.2f %.2f %.2f\n' % (ned2[1], ned2[0], -ned2[2])) f1.close() f2.close()
def delaunay(project_dir, group_id): def gen_ac3d_surface(name, points_group, values_group, tris_group): kids = len(tris_group) # write out the ac3d file f = open( name, "w" ) f.write("AC3Db\n") trans = 0.0 f.write("MATERIAL \"\" rgb 1 1 1 amb 0.6 0.6 0.6 emis 0 0 0 spec 0.5 0.5 0.5 shi 10 trans %.2f\n" % (trans)) f.write("OBJECT world\n") f.write("kids " + str(kids) + "\n") for i in range(kids): points = points_group[i] values = values_group[i] tris = tris_group[i] f.write("OBJECT poly\n") f.write("loc 0 0 0\n") f.write("numvert %d\n" % len(points)) for j in range(len(points)): f.write("%.3f %.3f %.3f\n" % (points[j][0], points[j][1], values[j])) f.write("numsurf %d\n" % len(tris.simplices)) for tri in tris.simplices: f.write("SURF 0x30\n") f.write("mat 0\n") f.write("refs 3\n") for t in tri: f.write("%d 0 0\n" % (t)) f.write("kids 0\n") proj = ProjectMgr.ProjectMgr(project_dir) proj.load_images_info() print("Loading optimized points ...") matches = pickle.load( open( os.path.join(proj.analysis_dir, "matches_grouped"), "rb" ) ) # load the group connections within the image set groups = Groups.load(proj.analysis_dir) points_group = [] values_group = [] tris_group = [] # initialize temporary structures for vanity stats for image in proj.image_list: image.raw_points = [] image.raw_values = [] image.sum_values = 0.0 image.sum_count = 0.0 image.max_z = -9999.0 image.min_z = 9999.0 # elevation stats print("Computing stats...") ned_list = [] for match in matches: if match[1] == group_id: # used by current group ned_list.append(match[0]) avg = -np.mean(np.array(ned_list)[:,2]) std = np.std(np.array(ned_list)[:,2]) print("Average elevation: %.2f" % avg) print("Standard deviation: %.2f" % std) # sort through points print('Reading feature locations from optimized match points ...') global_raw_points = [] global_raw_values = [] for match in matches: if match[1] == group_id: # used by current group ned = match[0] diff = abs(-ned[2] - avg) if diff < 5*std: global_raw_points.append( [ned[1], ned[0]] ) global_raw_values.append( -ned[2] ) else: print("Discarding match with excessive altitude:", match) print('Generating Delaunay meshes ...') global_tri_list = scipy.spatial.Delaunay(np.array(global_raw_points)) print('Generating ac3d surface model ...') name = os.path.join(proj.analysis_dir, "surface-global.ac") gen_ac3d_surface(name, [global_raw_points], [global_raw_values], [global_tri_list])