def __add__(s, t): cls, new, (prec, rounding) = s._ctxdata if not hasattr(t, '_mpc_'): t = s.mpc_convert_lhs(t) if t is NotImplemented: return t if hasattr(t, '_mpf_'): v = new(cls) v._mpc_ = mpc_add_mpf(s._mpc_, t._mpf_, prec, rounding) return v v = new(cls) v._mpc_ = mpc_add(s._mpc_, t._mpc_, prec, rounding) return v
def fadd(ctx, x, y, **kwargs): """ Adds the numbers *x* and *y*, giving a floating-point result, optionally using a custom precision and rounding mode. The default precision is the working precision of the context. You can specify a custom precision in bits by passing the *prec* keyword argument, or by providing an equivalent decimal precision with the *dps* keyword argument. If the precision is set to ``+inf``, or if the flag *exact=True* is passed, an exact addition with no rounding is performed. When the precision is finite, the optional *rounding* keyword argument specifies the direction of rounding. Valid options are ``'n'`` for nearest (default), ``'f'`` for floor, ``'c'`` for ceiling, ``'d'`` for down, ``'u'`` for up. **Examples** Using :func:`fadd` with precision and rounding control:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = False >>> fadd(2, 1e-20) mpf('2.0') >>> fadd(2, 1e-20, rounding='u') mpf('2.0000000000000004') >>> nprint(fadd(2, 1e-20, prec=100), 25) 2.00000000000000000001 >>> nprint(fadd(2, 1e-20, dps=15), 25) 2.0 >>> nprint(fadd(2, 1e-20, dps=25), 25) 2.00000000000000000001 >>> nprint(fadd(2, 1e-20, exact=True), 25) 2.00000000000000000001 Exact addition avoids cancellation errors, enforcing familiar laws of numbers such as `x+y-x = y`, which don't hold in floating-point arithmetic with finite precision:: >>> x, y = mpf(2), mpf('1e-1000') >>> print x + y - x 0.0 >>> print fadd(x, y, prec=inf) - x 1.0e-1000 >>> print fadd(x, y, exact=True) - x 1.0e-1000 Exact addition can be inefficient and may be impossible to perform with large magnitude differences:: >>> fadd(1, '1e-100000000000000000000', prec=inf) Traceback (most recent call last): ... OverflowError: the exact result does not fit in memory """ prec, rounding = ctx._parse_prec(kwargs) x = ctx.convert(x) y = ctx.convert(y) try: if hasattr(x, '_mpf_'): if hasattr(y, '_mpf_'): return ctx.make_mpf(mpf_add(x._mpf_, y._mpf_, prec, rounding)) if hasattr(y, '_mpc_'): return ctx.make_mpc(mpc_add_mpf(y._mpc_, x._mpf_, prec, rounding)) if hasattr(x, '_mpc_'): if hasattr(y, '_mpf_'): return ctx.make_mpc(mpc_add_mpf(x._mpc_, y._mpf_, prec, rounding)) if hasattr(y, '_mpc_'): return ctx.make_mpc(mpc_add(x._mpc_, y._mpc_, prec, rounding)) except (ValueError, OverflowError): raise OverflowError(ctx._exact_overflow_msg) raise ValueError("Arguments need to be mpf or mpc compatible numbers")
def fadd(ctx, x, y, **kwargs): """ Adds the numbers *x* and *y*, giving a floating-point result, optionally using a custom precision and rounding mode. The default precision is the working precision of the context. You can specify a custom precision in bits by passing the *prec* keyword argument, or by providing an equivalent decimal precision with the *dps* keyword argument. If the precision is set to ``+inf``, or if the flag *exact=True* is passed, an exact addition with no rounding is performed. When the precision is finite, the optional *rounding* keyword argument specifies the direction of rounding. Valid options are ``'n'`` for nearest (default), ``'f'`` for floor, ``'c'`` for ceiling, ``'d'`` for down, ``'u'`` for up. **Examples** Using :func:`~mpmath.fadd` with precision and rounding control:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = False >>> fadd(2, 1e-20) mpf('2.0') >>> fadd(2, 1e-20, rounding='u') mpf('2.0000000000000004') >>> nprint(fadd(2, 1e-20, prec=100), 25) 2.00000000000000000001 >>> nprint(fadd(2, 1e-20, dps=15), 25) 2.0 >>> nprint(fadd(2, 1e-20, dps=25), 25) 2.00000000000000000001 >>> nprint(fadd(2, 1e-20, exact=True), 25) 2.00000000000000000001 Exact addition avoids cancellation errors, enforcing familiar laws of numbers such as `x+y-x = y`, which don't hold in floating-point arithmetic with finite precision:: >>> x, y = mpf(2), mpf('1e-1000') >>> print x + y - x 0.0 >>> print fadd(x, y, prec=inf) - x 1.0e-1000 >>> print fadd(x, y, exact=True) - x 1.0e-1000 Exact addition can be inefficient and may be impossible to perform with large magnitude differences:: >>> fadd(1, '1e-100000000000000000000', prec=inf) Traceback (most recent call last): ... OverflowError: the exact result does not fit in memory """ prec, rounding = ctx._parse_prec(kwargs) x = ctx.convert(x) y = ctx.convert(y) try: if hasattr(x, '_mpf_'): if hasattr(y, '_mpf_'): return ctx.make_mpf(mpf_add(x._mpf_, y._mpf_, prec, rounding)) if hasattr(y, '_mpc_'): return ctx.make_mpc(mpc_add_mpf(y._mpc_, x._mpf_, prec, rounding)) if hasattr(x, '_mpc_'): if hasattr(y, '_mpf_'): return ctx.make_mpc(mpc_add_mpf(x._mpc_, y._mpf_, prec, rounding)) if hasattr(y, '_mpc_'): return ctx.make_mpc(mpc_add(x._mpc_, y._mpc_, prec, rounding)) except (ValueError, OverflowError): raise OverflowError(ctx._exact_overflow_msg) raise ValueError("Arguments need to be mpf or mpc compatible numbers")