def act(self): if ai.selfAlive(): self.getInputs() #self.printInputs() steerOutput = self.steeringNet.activate(self.steerInputs)[0] thrustOutput = self.thrustingNet.activate(self.thrustInputs)[0] shootOutput = self.shootingNet.activate(self.shootInputs)[0] print([steerOutput, thrustOutput, shootOutput]) if steerOutput > .5: ai.turnLeft(1) ai.turnRight(0) else: ai.turnRight(1) ai.turnLeft(0) if thrustOutput > .5: ai.thrust(1) else : ai.thrust(0) if shootOutput > .5: ai.fireShot() self.resetInputs() else: self.steeringNet.reset() self.thrustingNet.reset() self.shootingNet.reset()
def AI_loop(): #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) #Set variables heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500, heading) leftWall = ai.wallFeeler(500, heading + 90) rightWall = ai.wallFeeler(500, heading - 90) trackWall = ai.wallFeeler(500, tracking) #Thrust rules if ai.selfSpeed() <= 1 and frontWall >= 20: ai.thrust(1) elif trackWall < 40: ai.thrust(1) #Turn rules if leftWall < rightWall: ai.turnRight(1) else: ai.turnLeft(1) #Just keep shooting ai.fireShot()
def AI_loop(): #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) ai.setTurnSpeed(45) sendData = getSendData() output = getOutput(sendData, 12, 5, 2, weight) turn, thrust = "N", "N" if output[0] >= .55: ai.turnRight(1) turn = "R" elif output[0] < .45: ai.turnLeft(1) turn = "L" ai.setTurnSpeed(abs(output[0]-.5)*100) if output[1] > random(): ai.thrust(1) thrust = "Y" if ai.selfAlive(): print (turn +" "+ str(round(output[0],3)) +" | "+ thrust +" "+ str(round(output[1],3)))
def tturnLeft(self, num): if num == 1: self.turnedLeft = 1 ai.turnLeft(1) else: ai.turnLeft(0) self.turnedLeft = 0
def AI_loop(): #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) #Set variables heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500, heading) leftWall = ai.wallFeeler(500, heading + 90) rightWall = ai.wallFeeler(500, heading - 90) trackWall = ai.wallFeeler(500, tracking) #Thrust rules print("i am heading") print(heading) print(frontWall) print(leftWall) print(rightWall) print("front left right") if ai.selfSpeed() <= 5 and frontWall >= 20: ai.thrust(1) elif trackWall < 20: ai.thrust(1) #Turn rules # if leftWall < rightWall: # ai.turnRight(1) # else: # ai.turnLeft(1) #------------------------ degList = [] deg = 0 for i in range(9): degree = heading + deg degList.append(ai.wallFeeler(500, degree)) deg = deg + 45 highestDist = 0 print(degList) for element in degList: if element >= highestDist: highestDist = element print("highestDist") print(highestDist) print("index of highestdist") print(degList.index(highestDist)) ai.turn(heading + ((degList.index(highestDist)) * 45)) print("the way to turn") print(heading + ((degList.index(highestDist)) * 45)) #------------------------------- #Just keep shooting ai.fireShot()
def AI_loop(): #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) #Set variables heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500,heading) left45Wall = ai.wallFeeler(500,heading+45) right45Wall = ai.wallFeeler(500,heading-45) left90Wall = ai.wallFeeler(500,heading+90) right90Wall = ai.wallFeeler(500,heading-90) left135Wall = ai.wallFeeler(500,heading+135) right135Wall = ai.wallFeeler(500,heading-135) backWall = ai.wallFeeler(500,heading-180) trackWall = ai.wallFeeler(500,tracking)
def AI_loop(self): # Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) #-------------------- Set variables --------------------# heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500, heading) leftWall = ai.wallFeeler(500, heading + 45) rightWall = ai.wallFeeler(500, heading - 45) leftWallStraight = ai.wallFeeler(500, heading + 90) rightWallStraight = ai.wallFeeler(500, heading - 90) leftBack = ai.wallFeeler(500, heading + 135) rightBack = ai.wallFeeler(500, heading - 135) backWall = ai.wallFeeler(500, heading - 180) trackWall = ai.wallFeeler(500, tracking) R = (heading - 90) % 360 L = (heading + 90) % 360 aim = ai.aimdir(0) bullet = ai.shotAlert(0) speed = ai.selfSpeed() message = ai.scanMsg(0) x = ai.selfX() y = ai.selfY() if "***" in message: coordMessage = message.split("***")[1] coordinatesString = coordMessage.strip().split(" [")[0] coordinates = eval(coordinatesString) closestEnemyX = coordinates[0] closestEnemyY = coordinates[1] toTurn = self.angleToPoint(x, y, closestEnemyX, closestEnemyY, heading) distance = self.distance(x, closestEnemyX, y, closestEnemyY) #-------------------- Move to target point --------------------# if toTurn > 0 and toTurn < 20 and distance > 300: ai.thrust(1) ai.turnLeft(0) ai.turnRight(0) elif toTurn >= 20: ai.turnRight(1) elif toTurn <= 0: ai.turnLeft(1) if self.counter % 300 == 0: self.foundPrey((900, 400)) self.counter = self.counter + 1
def AI_loop(): #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) #Set variables for Wall feelers, heading and tracking of the agent ## heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500, heading) left45Wall = ai.wallFeeler(500, heading + 45) right45Wall = ai.wallFeeler(500, heading - 45) left90Wall = ai.wallFeeler(500, heading + 90) right90Wall = ai.wallFeeler(500, heading - 90) left135Wall = ai.wallFeeler(500, heading + 135) right135Wall = ai.wallFeeler(500, heading - 135) backWall = ai.wallFeeler(500, heading - 180) trackWall = ai.wallFeeler(500, tracking) ## Create an array that represents the closing rate of each 45 degree of the full 360 degrees surrounding the agent ## result_list = [] ## Array of the same size, but contains the risk of each direction ## risk_list = [] for i in range(8): Degree = tracking + (45 * i) Speed = ai.selfSpeed() Distance = ai.wallFeeler(10000, tracking + (45 * i)) result = Closing_Rate(Degree, tracking, Speed, Distance) result_list.append(result) ### Calculate the Fuzzy membership ### ### 1. Fuzzy Membership For Closing Rate (Speed + Tracking Involved) ### ### 2. Fuzzy Membership For Distance From Walls ### closing_rate, distance = Closing_Rate(Degree, tracking, Speed, Distance) low, medium, fast = Fuzzy_Speed( closing_rate, closingRate_SlowTopAlertValue, closingRate_SlowBottomAlertValue, closingRate_MediumBottomLeftAlertValue, closingRate_MediumTopLeftAlertValue, closingRate_MediumTopRightAlertValue, closingRate_MediumBottomRightAlertValue, closingRate_FastBottomAlertValue, closingRate_FastTopAlertValue) close, far = Fuzzy_Distance(distance, Distance_CloseTopAlertValue, Distance_CloseBottomAlertValue, Distance_FarBottomAlertValue, Distance_FarTopAlertValue) #print("close-far", close, far) risk = Fuzzy_Risk(low, medium, fast, close, far) risk_list.append(risk) ## Get the direction in deg that is most risky for the robot as well as the least risky direction ## max_risk = max(risk_list) track_risk = (tracking + (risk_list.index(max_risk) * 45) % 360) min_risk = min( risk_list ) ## Note: Biase Towards Left Side since min get the first min when risk might be equal ## ####### Getters Variable Regarding Important Information About Enemies ######## ##Find the closest ennemy## enemy = ai.lockClose() ## Get the lockheadingdeg of enemy ## head = ai.lockHeadingDeg() ## Get the dstance from enemy ## enemyDist = ai.selfLockDist() ## Get the angles on both side between tracking and heading to decide which way to turn ## dist = (heading - track_risk) % 360 dist2 = (360 - dist) % 360 ###### Production System Rules ###### ## Turning Rules ## if (dist <= 130 and dist >= 0 and ai.selfSpeed() > 0 and max_risk >= 75): ai.turnLeft(1) elif (dist2 <= 130 and dist2 >= 0 and ai.selfSpeed() > 0 and max_risk >= 75): ai.turnRight(1) elif (trackWall <= 150): ai.thrust(1) ##### Bullet Avoidance Commands ##### elif (ai.shotAlert(0) >= 0 and ai.shotAlert(0) <= 50): if (ai.shotVelDir(0) != -1 and ai.angleDiff(heading, ai.shotVelDir(0)) > 0 and ai.selfSpeed() <= 5): ai.turnLeft(1) ai.thrust(1) elif (ai.shotVelDir(0) != -1 and ai.angleDiff(heading, ai.shotVelDir(0)) < 0 and ai.selfSpeed() <= 5): ai.turnRight(1) ai.thrust(1) elif (ai.shotVelDir(0) != -1 and ai.angleDiff(heading, ai.shotVelDir(0)) > 0 and ai.selfSpeed() > 5): ai.turnLeft(1) else: ai.turnRight(1) ##### Shooting Ennemy Commands ##### elif (enemyDist <= 3000 and heading > (head) and enemyDist != 0 and ai.selfSpeed() > 2): ai.turnRight(1) ai.fireShot() elif (enemyDist <= 3000 and heading < (head) and enemyDist != 0 and ai.selfSpeed() > 2): ai.turnLeft(1) ai.fireShot() ## Rules if nothing is happening ## elif (ai.selfSpeed() < 5): ai.thrust(1) else: ai.thrust(0)
def AI_loop(): global maxSpeed, shotAngle, wallClose, dead, previousScore global turnedLeft, turnedRight, thrusted, shot #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) ai.setTurnSpeed(45) #Set variables""" heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) trackWall = ai.wallFeeler(500, tracking) trackLWall = ai.wallFeeler(500, tracking+3) trackRWall = ai.wallFeeler(500, tracking - 3) frontWall = ai.wallFeeler(500,heading) flWall = ai.wallFeeler(500, heading + 10) frWall = ai.wallFeeler(500, heading - 10) leftWall = ai.wallFeeler(500,heading+90) llWall = ai.wallFeeler(500, heading + 100) rlWall = ai.wallFeeler(500, heading + 80) rightWall = ai.wallFeeler(500,heading-90) lrWall = ai.wallFeeler(500, heading - 80) rrWall = ai.wallFeeler(500, heading - 100) trackWall = ai.wallFeeler(500,tracking) backWall = ai.wallFeeler(500, heading - 180) backLeftWall = ai.wallFeeler(500, heading - 190) backRightWall = ai.wallFeeler(500, heading - 170) speed = ai.selfSpeed() closest = min(frontWall, leftWall, rightWall, backWall, flWall, frWall) def closestWall(x): #Find the closest Wall return { frontWall : 1, leftWall : 2, rightWall : 3, backWall : 4, flWall : 5, frWall : 6, }[x] wallNum = closestWall(closest) #Code for finding the angle to the closest ship targetX, targetY = ai.screenEnemyX(0), ai.screenEnemyY(0) #baseString = "["+str(flWall/500)+","+str(frontWall/500)+","+str(frWall/500) + "," + str(backLeftWall/500) + "," + str(backWall/500) + "," + str(backRightWall/500) + ","+str(leftWall/500)+","+str(rightWall/500)+","+str(trackLWall/500) + "," + str(trackWall/500) + ","+str(trackRWall/500) + "," + str(speed/10) calcDir = -1 if targetX- ai.selfX() != 0: calcDir = (math.degrees(math.atan2((targetY - ai.selfY()), (targetX- ai.selfX()))) + 360)%360 crashWall = min(trackWall, trackLWall, trackRWall) #The wall we are likely to crash into if we continue on our current course #Rules for turning if crashWall > wallClose*speed and closest > 25 and targetX != -1: #If we are far enough away from a predicted crash and no closer than 25 pixels to a wall we can try and aim and kill them diff = (calcDir - heading) #if ai.shotAlert(0) > -1 and ai.shotAlert(0) < 35: #If we are about to get shot # tturnRight(1) #Screw aiming and turn right and thrust # tthrust(1) #This is arguably a horrible strategy because our sideways profile is much larger, but it's required for the grade if diff >= 0: if diff >= 180: ai.turnRight(1) #If the target is to our right- turn right else : ai.turnLeft(1) #If the target is to our left - turn left else : if diff > -180: ai.turnRight(1) #If the target is to our right - turn right else : ai.turnLeft(1) #If the target is to our left - turn left else : #Rules for avoiding death # if crashWall/ai.selfSpeed() > ai.closestShot() : if wallNum == 1 or wallNum == 5 or wallNum == 6: #Front Wall is Closest (Turn Away From It) ai.turnLeft(1) elif wallNum == 2 : # Left Wall is Closest (Turn Away From It) ai.turnRight(1) elif wallNum == 3 : #Right Wall is Closest (Turn Away From It) ai.turnLeft(1) else : #Back Wall is closest- turn so that we are facing directly away from it if backLeftWall < backRightWall: ai.turnRight(1) #We need to turn right to face more directly away from it if backLeftWall > backRightWall: # We need to turn left to face more directly away from it ai.turnLeft(1) #Rules for thrusting if speed < maxSpeed and frontWall > 100: #If we are moving slowly and we won't ram into anything, accelerate ai.thrust(1) elif trackWall < 200 and (ai.angleDiff(heading, tracking) > 120): #If we are getting close to a wall, and we can thrust away from it, do so ai.thrust(1) elif backWall < 20: #If there is a wall very close behind us, get away from it ai.thrust(1) if abs(calcDir - heading) < shotAngle and calcDir != -1: #If we are close to the current proper trajectory for a shot then fire ai.fireShot() previousScore = ai.selfScore()
def AI_loop(): global count_frame, loop, boolean, score, population_size, chromosome_size, population, mutation_prob, crossover_prob, fitness_list, generation, generation_size, first_time, done_learning #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) ## Get A Chromosome in the Population -- Eventually Will go through each individual in the population ## current_chromosome = population[loop] ## Transform Each Gene insisde A Single Selected Chromosome. 0s & 1s Are Turned Into Intergers For Fuzzy Sets to understand ## ## Each Value obtained is used to calculate the risk of each 45 degree around the agent ## ## Each value has its own "jump" variable which refers to the distance from each possible points/values ## ## The start and end represents the possible start point and end point for each variable and they depend on ## what the variiable is. It is to ensure a viable fuzzy set and fuzzy functions that these restrictions are applied. ## frontAlert = current_chromosome[0:5] frontAlertValue = transform(frontAlert, 25) backAlert = current_chromosome[5:9] backAlertValue = transform(backAlert, 25) speedAlert = current_chromosome[9:13] #4 bits speedAlertValue = transform(speedAlert, 1) #1 jumps per value EnemyAlert = current_chromosome[13:18] #5 bits EnemyAlertValue = transform(EnemyAlert, 50) #50 jumps per value TrackSlowAlert = current_chromosome[18:22] #4 bits TrackSlowAlertValue = transform(TrackSlowAlert, 25) #25 jumps per value TrackFastAlert = current_chromosome[22:26] #4 bits TrackFastAlertValue = transform(TrackFastAlert, 25) #25 jumps per value BulletAlert = current_chromosome[26:32] #4 bits BulletAlertValue = transform(BulletAlert, 15) #15 jumps per value ## Get values of variables for Wall Feelers, Head & Tracking ## heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500,heading) left45Wall = ai.wallFeeler(500,heading+45) right45Wall = ai.wallFeeler(500,heading-45) left90Wall = ai.wallFeeler(500,heading+90) right90Wall = ai.wallFeeler(500,heading-90) left135Wall = ai.wallFeeler(500,heading+135) right135Wall = ai.wallFeeler(500,heading-135) backWall = ai.wallFeeler(500,heading-180) trackWall = ai.wallFeeler(500,tracking) ####### Getters Variable Regarding Important Information About Enemies ######## ##Find the closest ennemy## enemy = ai.lockClose() ## Get the lockheadingdeg of enemy ## head = ai.lockHeadingDeg() ## Get the dstance from enemy ## enemyDist = ai.selfLockDist() ## If the Enemy is Dead ## if(ai.selfAlive() == 0 and boolean == False): ## Calculate Fitness Current Population ## score_previous = score score_current = ai.selfScore() fitness_value = fitness(population, count_frame, score_previous, score_current) fitness_list.append(fitness_value) ## If it went through the whole population and ready to move to next generation ## if((loop+1) == population_size): ## Output the fitness of population to allow user to see if learning is happening ## print("Generation:", generation) print("Agent Fitness:") print(fitness_list) print("Average Fitness:", statistics.mean(fitness_list)) print("Best Fitness:", max(fitness_list)) ## Finding the optimal chromosome to output it in data file ## string_maxChromosome = "" for chrom_max in range(chromosome_size): string_maxChromosome = string_maxChromosome + str(population[fitness_list.index(max(fitness_list))][chrom_max]) ## Formatting entire population in a big string to register it in excel file## string_population = "" for pop in range(population_size): for pop_chrom in range(chromosome_size): string_population = string_population + str(population[pop][pop_chrom]) if(pop != (population_size-1)): string_population = string_population + "," ## Formatting entire population's fitness in a big string to register it in excel file## string_fitness = "" for fit in range(len(fitness_list)): string_fitness = string_fitness + str(fitness_list[fit]) if(fit != (len(fitness_list)-1)): string_fitness = string_fitness + "," ## Output Data into Excel File ## titles = ["Generation", "Average Fitness", "Best Fitness","Population Size", "Chromosome Size", "Crossover Probability", "Mutation Probability", "Best Chromosome", "Entire Population Chromosome", "Entire Population Fitness"] data = [generation, statistics.mean(fitness_list), max(fitness_list), population_size, chromosome_size, crossover_prob, mutation_prob, string_maxChromosome, string_population, string_fitness] first_time = Save_Data("Tiger_Training_Data.xls", 0, titles, data, first_time) ## Select Next Generation -- Apply Crossover & Mutation ## new_population = select(population, fitness_list) new_population = crossover(new_population, chromosome_size, population_size, crossover_prob) new_population = mutate(new_population, chromosome_size, mutation_prob) population = new_population loop = 0 count_frame = 0 generation += 1 fitness_list.clear() ### DONE -- QUIT ### if (generation == generation_size): quitAI() ## Move to the next individual in population ## else: loop += 1 count_frame = 0 boolean = True else: ## The agent is Alive ## if(ai.selfAlive() == 1): ### Turning Rules ### if frontWall <= frontAlertValue and (left45Wall < right45Wall) and ai.selfSpeed() > speedAlertValue: ai.turnRight(1) elif frontWall <= frontAlertValue and (left45Wall > right45Wall) and ai.selfSpeed() > speedAlertValue: ai.turnLeft(1) elif left90Wall <= frontAlertValue and ai.selfSpeed() > speedAlertValue: ai.turnRight(1) elif right90Wall <= frontAlertValue and ai.selfSpeed() > speedAlertValue: ai.turnLeft(1) ### Thrust commands #### elif ai.selfSpeed() <= speedAlertValue and (frontWall >= frontAlertValue) and (left45Wall >= frontAlertValue) and (right45Wall >= frontAlertValue) and (right90Wall >= frontAlertValue) and (left90Wall >= frontAlertValue) and (left135Wall >= backAlertValue) and (right135Wall >= backAlertValue) and (backWall >= backAlertValue): ai.thrust(1) elif trackWall <= TrackFastAlertValue and ai.selfSpeed() >= speedAlertValue: ai.thrust(1) elif trackWall <= TrackSlowAlertValue and ai.selfSpeed() <= speedAlertValue: ai.thrust(1) elif backWall <= TrackFastAlertValue and ai.selfSpeed() >= speedAlertValue: ai.thrust(1) elif backWall <= TrackSlowAlertValue and ai.selfSpeed() <= speedAlertValue: ai.thrust(1) elif left135Wall <= TrackFastAlertValue and ai.selfSpeed() >= speedAlertValue: ai.thrust(1) elif left135Wall <= TrackSlowAlertValue and ai.selfSpeed() <= speedAlertValue: ai.thrust(1) elif right135Wall <= TrackFastAlertValue and ai.selfSpeed() >= speedAlertValue: ai.thrust(1) elif right135Wall <= TrackSlowAlertValue and ai.selfSpeed() <= speedAlertValue: ai.thrust(1) ##### Bullet Avoidance Commands ##### elif ai.shotAlert(0) >= 0 and ai.shotAlert(0) <= BulletAlertValue: if ai.angleDiff(heading, ai.shotVelDir(0)) > 0 and ai.selfSpeed() <= speedAlertValue: ai.turnLeft(1) ai.thrust(1) elif ai.angleDiff(heading, ai.shotVelDir(0)) < 0 and ai.selfSpeed() <= speedAlertValue: ai.turnRight(1) ai.thrust(1) elif ai.angleDiff(heading, ai.shotVelDir(0)) > 0 and ai.selfSpeed() > speedAlertValue: ai.turnLeft(1) else: ai.turnRight(1) ##### Shooting Ennemy Commands ##### elif enemyDist <= EnemyAlertValue and heading > (head) and ai.selfSpeed() > speedAlertValue: ai.turnRight(1) ai.fireShot() elif enemyDist <= EnemyAlertValue and heading < (head) and ai.selfSpeed() > speedAlertValue: ai.turnLeft(1) ai.fireShot() elif ai.selfSpeed() < speedAlertValue: ai.thrust(1) else: ai.thrust(0) count_frame += 3 boolean = False
def AI_loop(self): # Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) if self.quitFlag == True: with open('fitness.txt', 'a') as inFile: outString = str(self.fitness) + "\n" inFile.write(outString) ai.quitAI() if ai.selfAlive() == 0 or self.frames > 3000: self.foundPreyFlag = False self.parterFoundPreyFlag = False self.checking = False if self.foundPreyFlag == True and self.parterFoundPreyFlag == True: self.fitness = self.fitness + 2 #-------------------- Set variables --------------------# heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500, heading) leftWall = ai.wallFeeler(500, heading + 45) rightWall = ai.wallFeeler(500, heading - 45) leftWallStraight = ai.wallFeeler(500, heading + 90) rightWallStraight = ai.wallFeeler(500, heading - 90) leftBack = ai.wallFeeler(500, heading + 135) rightBack = ai.wallFeeler(500, heading - 135) backWall = ai.wallFeeler(500, heading - 180) trackWall = ai.wallFeeler(500, tracking) R = (heading - 90) % 360 L = (heading + 90) % 360 aim = ai.aimdir(0) bullet = ai.shotAlert(0) speed = ai.selfSpeed() x = ai.selfX() y = ai.selfY() enemyX = -1 enemyY = -1 enemyTeam = -1 if self.preyID != -1: enemyX = ai.screenEnemyXId(self.preyID) enemyY = ai.screenEnemyYId(self.preyID) enemyTeam = ai.enemyTeamId(self.preyID) else: enemyX = ai.screenEnemyXId(ai.closestShipId()) enemyY = ai.screenEnemyYId(ai.closestShipId()) enemyTeam = ai.enemyTeamId(ai.closestShipId()) myTeam = ai.selfTeam() coordinate = self.grid[self.counter][1] message = ai.scanMsg(0) # Continually check messages if message != self.MessageBuffer[-1]: self.checkMessage(message) # Check if enemy is on screen # If it is: broadcast location of enemy if enemyX != -1 and enemyY != -1 and enemyTeam != 2: coordinate = (enemyX, enemyY) self.foundPreyFlag = True self.foundPrey(coordinate) self.fitness += 1 elif self.foundPreyFlag == True: self.foundPreyFlag = False ai.talk("--- " + "Lost prey!") if self.parterFoundPreyFlag == True: coordinate = self.preyLocation # Calculate most efficient way to turn to get where we want to targetX = coordinate[0] targetY = coordinate[1] toTurn = self.angleToPoint(x, y, targetX, targetY, heading) distance = self.distance(x, targetX, y, targetY) if self.checking == False and self.foundPreyFlag == False: ai.talk("checking! " + str(coordinate)) self.checking = True # If speed is too fast, turn around and thrust to negate velocity if speed > self.gene0: turning = ai.angleDiff(heading, tracking) if abs(turning) > self.gene1 and abs(turning) <= self.gene2: ai.turnLeft(0) ai.turnRight(0) if self.frames % self.gene3 == 0: ai.thrust(1) elif turning <= self.gene4 and turning > self.gene5: ai.turnRight(1) else: ai.turnLeft(1) if self.foundPreyFlag == True and distance <= 150: self.caughtPrey(coordinate, distance) else: #-------------------- Go to coordinate / enemy --------------------# if abs(toTurn) < self.gene6 and distance > self.gene7: ai.turnLeft(0) ai.turnRight(0) if self.frames % self.gene8 == 0: ai.thrust(1) elif toTurn >= self.gene9: ai.turnLeft(1) elif toTurn <= -self.gene10: ai.turnRight(1) if self.foundPreyFlag == True and distance <= 150: self.caughtPrey(coordinate, distance) elif self.foundPreyFlag == True and distance > 150: self.foundPrey(coordinate) elif distance < 150: self.markSpotChecked(coordinate, "me") #-------------------- Old turn and thrust rules --------------------# if speed <= self.gene14 and frontWall >= self.gene15: ai.thrust(1) elif trackWall < self.gene16: ai.thrust(1) elif backWall < self.gene17: ai.thrust(1) if (backWall < self.gene18) and (rightWallStraight < self.gene19): ai.turnLeft(1) elif backWall < self.gene20 and (leftWallStraight < self.gene21): ai.turnRight(1) elif leftWallStraight < rightWallStraight and trackWall < self.gene22: ai.turnRight(1) elif leftWallStraight > rightWallStraight and trackWall < self.gene23: ai.turnLeft(1) self.frames = self.frames + 1 if self.caughtPreyFlag == True and self.quitFlag == False: ai.talk("quit!") self.quitFlag = True if ai.selfAlive() == 0 or self.frames > 1800: self.quitFlag = True
def AI_loop(): turn, thrust = .5, 0 ai.turnLeft(0) ai.turnRight(0) ai.thrust(0) ai.setTurnSpeed(64) heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) trackWall = ai.wallFeeler(500, tracking) frontL = ai.wallFeeler(500, heading + 10) frontR = ai.wallFeeler(500, heading - 10) leftF = ai.wallFeeler(500, heading + 70) leftB = ai.wallFeeler(500, heading + 110) rightF = ai.wallFeeler(500, heading - 70) rightB = ai.wallFeeler(500, heading - 110) backL = ai.wallFeeler(500, heading - 200) backR = ai.wallFeeler(500, heading - 160) trackHeadRelative = (tracking - heading) speed = ai.selfSpeed() def findClosestArea(x): return { frontL: 1, leftF: 2, leftB: 3, backL: 4, backR: 5, rightF: 6, rightB: 7, frontR: 8 }[x] closestVal = min(frontL, leftF, leftB, backL, backR, rightF, rightB, frontR) #Find the closest Wall to our ship closestWall = findClosestArea(closestVal) #Rules for turning if closestWall == 1: ai.setTurnSpeed(64) ai.turnRight(1) turn = 1 elif closestWall == 2: ai.setTurnSpeed(46) ai.turnRight(1) turn = .9 elif closestWall == 3: ai.setTurnSpeed(28) ai.turnRight(1) turn = .8 elif closestWall == 4: ai.setTurnSpeed(10) ai.turnRight(1) turn = .6 elif closestWall == 5: ai.setTurnSpeed(10) ai.turnLeft(1) turn = .4 elif closestWall == 6: ai.setTurnSpeed(28) ai.turnLeft(1) turn = .2 elif closestWall == 7: ai.setTurnSpeed(26) ai.turnLeft(1) turn = .1 elif closestWall == 8: ai.setTurnSpeed(64) ai.turnLeft(1) turn = 0 #Rules for thrusting #if we are going slow and there isn't a wall in front of us if min(frontL, frontR) > 100 and speed < 3: ai.thrust(1) thrust = 1 #if we are heading toward a wall and we are not facing it elif trackWall < 150 and (ai.angleDiff(heading, tracking) > 90): ai.thrust(1) thrust = 1 #If there is a wall very close behind us, get away from it elif backL < 20 or backR < 20: ai.thrust(1) thrust = 1 doBackPropigation = True if ai.selfAlive() and doBackPropigation: #adjust the the learning NN infile = open("Sem2W_1.txt", "r") weight = eval(infile.read()) infile.close() sendData = getSendData(turn, thrust) weight = adjustNN(sendData, 12, 5, 2, weight) outfile = open("Sem2W_1.txt", "w") outfile.write(str(weight)) outfile.close()
def AI_loop(): global lastTurn #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) ai.setTurnSpeed(45) #Set variables""" heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) trackWall = ai.wallFeeler(500, tracking) trackLWall = ai.wallFeeler(500, tracking + 3) trackRWall = ai.wallFeeler(500, tracking - 3) frontWall = ai.wallFeeler(500, heading) flWall = ai.wallFeeler(500, heading + 10) frWall = ai.wallFeeler(500, heading - 10) leftWall = ai.wallFeeler(500, heading + 90) rightWall = ai.wallFeeler(500, heading - 90) trackWall = ai.wallFeeler(500, tracking) backWall = ai.wallFeeler(500, heading - 180) backLeftWall = ai.wallFeeler(500, heading - 185) backRightWall = ai.wallFeeler(500, heading - 175) speed = ai.selfSpeed() closest = min(frontWall, leftWall, rightWall, backWall) def closestWall(x): #Find the closest Wall return { frontWall: 1, leftWall: 2, rightWall: 3, backWall: 4, flWall: 5, frWall: 6, }[x] wallNum = closestWall(closest) #Code for finding the angle to the closest ship target = ai.closestShipId() targetX, targetY = ai.screenEnemyX(0), ai.screenEnemyY(0) calcDir = 0 if targetX - ai.selfX() != 0: calcDir = (math.degrees( math.atan2((targetY - ai.selfY()), (targetX - ai.selfX()))) + 360) % 360 targetDir = calcDir crashWall = min( trackWall, trackLWall, trackRWall ) #The wall we are likely to crash into if we continue on our current course #Rules for turning if crashWall > 25 * speed and closest > 30 and targetX != -1: #If we are far enough away from a predicted crash and no closer than 25 pixels to a wall, and there isn't a wall between us and the closest enemy #print("Aiming", targetDir, " Current", heading) diff = (calcDir - heading) if ai.shotAlert(0) > -1 and ai.shotAlert(0) < 35: ai.turnRight(1) ai.thrust(1) elif diff >= 0: if diff >= 180: a = 0 ai.turnRight(1) #If the target is to our right- turn right elif diff != 0: a = 0 ai.turnLeft(1) #If the target is to our left - turn left else: if diff > -180: a = 0 ai.turnRight(1) #If the target is to our right - turn right else: a = 0 ai.turnLeft(1) #If the target is to our left - turn left else: #Rules for avoiding death # if crashWall/ai.selfSpeed() > ai.closestShot() : #We find a target heading using our current trajectory and the closest wall then turn in it's direction targetHeading = heading print(heading) if wallNum == 1 or wallNum == 6 or wallNum == 5: #Front Wall is Closest if lastTurn == 1: targetHeading += 270 targetHeading = (targetHeading) % 360 else: targetHeading += 90 targetHeading = targetHeading % 360 print("front") elif wallNum == 2: # Left Wall is Closest targetHeading += 270 targetHeading = (targetHeading) % 360 lastTurn = 1 print("leftwall") elif wallNum == 3: targetHeading = targetHeading + 90 targetHeading = (targetHeading) % 360 lastTurn = 2 print("rightWall") else: if backLeftWall < backRightWall: lastTurn = 2 targetHeading += 5 targetHeading = (targetHeading) % 360 if backLeftWall > backRightWall: lastTurn = 1 targetHeading -= 5 targetHeading = (targetHeading) % 360 speedConcern = ai.selfSpeed() - 4 if speedConcern < 0: speedConcern = 0 elif speedConcern > 5: speedConcern = 5 #targetHeading = (targetHeading*(1-(speedConcern/5))) + (((tracking+170)%360)*(speedConcern/5)) if speedConcern > 2: targetHeading = (tracking + 180) % 360 diff = (targetHeading - heading) print("targetHEading : ", targetHeading, " heading : ", heading) if diff >= 0: if diff >= 180: ai.turnRight( 1) #If the targetHEading is to our right- turn right print("right") elif diff != 0: ai.turnLeft( 1) #If the targeHeadingt is to our left - turn left print("left") else: if diff > -180: print("right") ai.turnRight( 1) #If the targetHeading is to our right - turn right #print("right") else: print("left") ai.turnLeft( 1) #If the targetHeading is to our left - turn left #print("nice") #Rules for thrusting if speed < 5 and frontWall > 200: #If we are moving slowly and we won't ram into anything, accelerate ai.thrust(1) elif crashWall < 25 * speed and ( abs(tracking - heading) > 120 ): #If we are getting close to a wall, and we can thrust away from it, do so ai.thrust(1) elif backWall < 30: #If there is a wall very close behind us, get away from it ai.thrust(1) if abs( calcDir - heading ) < 15: #If we are close to the current proper trajectory for a shot then fire ai.fireShot()
def AI_loop(): turn, thrust = .5, 0 ai.turnLeft(0) ai.turnRight(0) ai.thrust(0) ai.setTurnSpeed(64) heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) trackWall = ai.wallFeeler(500, tracking) frontL = ai.wallFeeler(500, heading + 10) frontR = ai.wallFeeler(500, heading - 10) leftF = ai.wallFeeler(500, heading + 70) leftB = ai.wallFeeler(500, heading + 110) rightF = ai.wallFeeler(500, heading - 70) rightB = ai.wallFeeler(500, heading - 110) backL = ai.wallFeeler(500, heading - 190) backR = ai.wallFeeler(500, heading - 170) speed = ai.selfSpeed() def findClosestArea(x): return { frontL: 1, leftF: 2, leftB: 3, backL: 4, backR: 5, rightF: 6, rightB: 7, frontR: 8 }[x] closestVal = min(frontL, leftF, leftB, backL, backR, rightF, rightB, frontR) #Find the closest Wall to our ship closestWall = findClosestArea(closestVal) #Rules for turning #if we are heading for a wall, turn away from it if trackWall < 100: #round(abs(ai.angleDiff(heading, tracking))/3) ai.setTurnSpeed(15 + round(abs(ai.angleDiff(heading, tracking)) / 4)) if ai.angleDiff(heading, tracking) > 0: ai.turnRight(1) turn = .9 else: ai.turnLeft(1) turn = .1 #otherwise turn away from the closest wall elif closestWall == 1: ai.setTurnSpeed(64) ai.turnRight(1) turn = 1 elif closestWall == 2: ai.setTurnSpeed(46) ai.turnRight(1) turn = .9 elif closestWall == 3: ai.setTurnSpeed(28) ai.turnRight(1) turn = .8 elif closestWall == 4: ai.setTurnSpeed(10) ai.turnRight(1) turn = .6 elif closestWall == 5: ai.setTurnSpeed(10) ai.turnLeft(1) turn = .4 elif closestWall == 6: ai.setTurnSpeed(28) ai.turnLeft(1) turn = .2 elif closestWall == 7: ai.setTurnSpeed(26) ai.turnLeft(1) turn = .1 elif closestWall == 8: ai.setTurnSpeed(64) ai.turnLeft(1) turn = 0 #if we are going too fast and are not in danger turn around # if speed > 2.5 and closestVal > 100: # ai.setTurnSpeed(64) # if ai.angleDiff(heading, tracking) > 0: # ai.turnRight(1) # turn = 1 # #print("R",random()) # else: # ai.turnLeft(1) # turn = 0 #print("L",random()) #Rules for thrusting #if we are going slow and there isn't a wall in front of us if min(frontL, frontR) > 100 and speed < 2.5: ai.thrust(1) thrust = 1 #if we are going too fast and are facing away from the direction we are heading elif abs(ai.angleDiff(heading, tracking)) > 135 and speed > 2.5: ai.thrust(1) thrust = 1 #if we are heading toward a wall and we are not facing it elif trackWall < 150 and (abs(ai.angleDiff(heading, tracking)) > 120): ai.thrust(1) thrust = 1 #If there is a wall very close behind us, get away from it elif backL < 25 or backR < 25: ai.thrust(1) thrust = 1 doBackPropigation = False if ai.selfAlive() and doBackPropigation: #adjust the the learning NN infile = open("Sem2W_1.txt", "r") weight = eval(infile.read()) infile.close() sendData = getSendData(turn, thrust) weight = adjustNN(sendData, 12, 5, 2, weight) outfile = open("Sem2W_1.txt", "w") outfile.write(str(weight)) outfile.close()
def AI_loop(): turn, thrust = .5, 0 ai.turnLeft(0) ai.turnRight(0) ai.thrust(0) ai.setTurnSpeed(64) heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) trackWall = ai.wallFeeler(500, tracking) trackL3 = ai.wallFeeler(500, tracking + 3) trackL10 = ai.wallFeeler(500, tracking + 10) trackR3 = ai.wallFeeler(500, tracking - 3) trackR10 = ai.wallFeeler(500, tracking - 10) frontWall = ai.wallFeeler(500, heading) frontL = ai.wallFeeler(500, heading + 15) frontR = ai.wallFeeler(500, heading - 15) leftWall = ai.wallFeeler(500, heading + 90) leftF = ai.wallFeeler(500, heading + 65) leftB = ai.wallFeeler(500, heading + 115) rightWall = ai.wallFeeler(500, heading - 90) rightF = ai.wallFeeler(500, heading - 65) rightB = ai.wallFeeler(500, heading - 115) backWall = ai.wallFeeler(500, heading - 180) backL = ai.wallFeeler(500, heading - 195) backR = ai.wallFeeler(500, heading - 165) trackHeadRelative = (tracking - heading) speed = ai.selfSpeed() def findClosestArea(x): return { frontWall: 1, frontL: 2, leftF: 3, leftWall: 4, leftB: 5, backL: 6, backWall: 7, backR: 8, rightB: 9, rightWall: 10, rightF: 11, frontR: 12 }[x] closestVal = min(frontWall, frontL, leftF, leftWall, leftB, backL, backWall, backR, rightB, rightWall, rightF, frontR) #Find the closest Wall to our ship closestWall = findClosestArea(closestVal) #The wall we are likely to crash into if we continue on our current course crashWall = min(trackWall, trackL3, trackL10, trackR3, trackR10) #Rules for turning if closestWall == 1: ai.setTurnSpeed(64) ai.turnLeft(1) turn = 0 elif closestWall == 2: ai.setTurnSpeed(64) ai.turnRight(1) turn = 1 elif closestWall == 3: ai.setTurnSpeed(52) ai.turnRight(1) turn = .9 elif closestWall == 4: ai.setTurnSpeed(40) ai.turnRight(1) turn = .8 elif closestWall == 5: ai.setTurnSpeed(28) ai.turnRight(1) turn = .7 elif closestWall == 6: ai.setTurnSpeed(16) ai.turnRight(1) turn = .6 elif closestWall == 7: pass elif closestWall == 8: ai.setTurnSpeed(16) ai.turnLeft(1) turn = .4 elif closestWall == 9: ai.setTurnSpeed(28) ai.turnLeft(1) turn = .3 elif closestWall == 10: ai.setTurnSpeed(40) ai.turnLeft(1) turn = .2 elif closestWall == 11: ai.setTurnSpeed(52) ai.turnLeft(1) turn = .1 elif closestWall == 12: ai.setTurnSpeed(64) ai.turnLeft(1) turn = 0 #Rules for thrusting #if we are going slow and there isn't a wall in front of us if min(frontWall, frontL, frontR) > 100 and speed < 4: ai.thrust(1) thrust = 1 #if we are heading toward a wall and we are not facing it elif crashWall < 150 and (ai.angleDiff(heading, tracking) > 90): ai.thrust(1) thrust = 1 #If there is a wall very close behind us, get away from it elif backWall < 20 or backL < 20 or backR < 20: ai.thrust(1) thrust = 1 doBackPropigation = False if ai.selfAlive() and doBackPropigation: #adjust the the learning NN infile = open("Sem2W_2.txt", "r") weight = eval(infile.read()) infile.close() sendData = getSendData(turn, thrust) weight = adjustNN(sendData, 17, 7, 2, weight) outfile = open("Sem2W_2.txt", "w") outfile.write(str(weight)) outfile.close()
def AI_loop(): #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) ## Get values of variables for Wall Feelers, Head & Tracking ## heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500, heading) left45Wall = ai.wallFeeler(500, heading + 45) right45Wall = ai.wallFeeler(500, heading - 45) left90Wall = ai.wallFeeler(500, heading + 90) right90Wall = ai.wallFeeler(500, heading - 90) left135Wall = ai.wallFeeler(500, heading + 135) right135Wall = ai.wallFeeler(500, heading - 135) backWall = ai.wallFeeler(500, heading - 180) trackWall = ai.wallFeeler(500, tracking) ####### Getters Variable Regarding Important Information About Enemies ######## ##Find the closest ennemy## enemy = ai.lockClose() ## Get the lockheadingdeg of enemy ## head = ai.lockHeadingDeg() ## Get the dstance from enemy ## enemyDist = ai.selfLockDist() ##### Production System Rules ###### ### Turning Rules ### if frontWall <= frontAlertValue and ( left45Wall < right45Wall) and ai.selfSpeed() > speedAlertValue: ai.turnRight(1) elif frontWall <= frontAlertValue and ( left45Wall > right45Wall) and ai.selfSpeed() > speedAlertValue: ai.turnLeft(1) elif left90Wall <= frontAlertValue and ai.selfSpeed() > speedAlertValue: ai.turnRight(1) elif right90Wall <= frontAlertValue and ai.selfSpeed() > speedAlertValue: ai.turnLeft(1) ### Thrust commands #### elif ai.selfSpeed() <= speedAlertValue and ( frontWall >= frontAlertValue) and (left45Wall >= frontAlertValue) and ( right45Wall >= frontAlertValue) and (right90Wall >= frontAlertValue) and ( left90Wall >= frontAlertValue) and (left135Wall >= backAlertValue) and ( right135Wall >= backAlertValue) and (backWall >= backAlertValue): ai.thrust(1) elif trackWall <= TrackFastAlertValue and ai.selfSpeed( ) >= speedAlertValue: ai.thrust(1) elif trackWall <= TrackSlowAlertValue and ai.selfSpeed( ) <= speedAlertValue: ai.thrust(1) elif backWall <= TrackFastAlertValue and ai.selfSpeed() >= speedAlertValue: ai.thrust(1) elif backWall <= TrackSlowAlertValue and ai.selfSpeed() <= speedAlertValue: ai.thrust(1) elif left135Wall <= TrackFastAlertValue and ai.selfSpeed( ) >= speedAlertValue: ai.thrust(1) elif left135Wall <= TrackSlowAlertValue and ai.selfSpeed( ) <= speedAlertValue: ai.thrust(1) elif right135Wall <= TrackFastAlertValue and ai.selfSpeed( ) >= speedAlertValue: ai.thrust(1) elif right135Wall <= TrackSlowAlertValue and ai.selfSpeed( ) <= speedAlertValue: ai.thrust(1) ##### Bullet Avoidance Commands ##### elif ai.shotAlert(0) >= 0 and ai.shotAlert(0) <= BulletAlertValue: if ai.angleDiff( heading, ai.shotVelDir(0)) > 0 and ai.selfSpeed() <= speedAlertValue: ai.turnLeft(1) ai.thrust(1) elif ai.angleDiff( heading, ai.shotVelDir(0)) < 0 and ai.selfSpeed() <= speedAlertValue: ai.turnRight(1) ai.thrust(1) elif ai.angleDiff( heading, ai.shotVelDir(0)) > 0 and ai.selfSpeed() > speedAlertValue: ai.turnLeft(1) else: ai.turnRight(1) ##### Shooting Ennemy Commands ##### elif enemyDist <= EnemyAlertValue and heading > ( head) and ai.selfSpeed() > speedAlertValue: ai.turnRight(1) ai.fireShot() elif enemyDist <= EnemyAlertValue and heading < ( head) and ai.selfSpeed() > speedAlertValue: ai.turnLeft(1) ai.fireShot() elif ai.selfSpeed() < speedAlertValue: ai.thrust(1) else: ai.thrust(0)
def AI_loop(): #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) #Set variables heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500, heading) left45Wall = ai.wallFeeler(500, heading + 45) right45Wall = ai.wallFeeler(500, heading - 45) left90Wall = ai.wallFeeler(500, heading + 90) right90Wall = ai.wallFeeler(500, heading - 90) left135Wall = ai.wallFeeler(500, heading + 135) right135Wall = ai.wallFeeler(500, heading - 135) backWall = ai.wallFeeler(500, heading - 180) trackWall = ai.wallFeeler(500, tracking) ####### Shooting Ennemies ######## ##Find the closest ennemy## ClosestID = ai.closestShipId() #print(ClosestID) ##Get the closest ennemy direction and speed## ClosestSpeed = ai.enemySpeedId(ClosestID) #print(ClosestSpeed) ClosestDir = ai.enemyTrackingDegId(ClosestID) #print(ClosestDir) ## Get the lockheadingdeg ## enemy = ai.lockNext() print(enemy) head = ai.lockHeadingDeg() print(head) enemyDist = ai.selfLockDist() print(enemyDist) ### Turning Rules ### if frontWall <= 200 and (left45Wall < right45Wall): print("turning right") ai.turnRight(1) elif frontWall <= 200 and (left45Wall > right45Wall): ai.turnLeft(1) elif left90Wall <= 200: print("turning right") ai.turnRight(1) elif right90Wall <= 200: print("turning left") ai.turnLeft(1) ### Thrust commands #### elif ai.selfSpeed() <= 10 and (frontWall >= 200) and ( left45Wall >= 200) and (right45Wall >= 200) and ( right90Wall >= 200) and (left90Wall >= 200) and ( left135Wall >= 50) and (right135Wall >= 50) and (backWall >= 50): print("go forward") ai.thrust(1) elif trackWall < 75 and ai.selfSpeed() >= 10: ai.thrust(1) elif trackWall < 50 and ai.selfSpeed() <= 10: ai.thrust(1) elif backWall <= 75: ai.thrust(1) elif left135Wall <= 75: ai.thrust(1) elif right135Wall <= 75: ai.thrust(1) ##### Shooting Ennemy Commands ##### elif enemyDist <= 500 and heading > (head): ai.turnRight(1) ai.fireShot() elif enemyDist <= 500 and heading < (head): ai.turnLeft(1) ai.fireShot() else: print("chilling") ai.thrust(0)
def AI_loop(self): if self.team == False: ai.talk("/team 2") self.team = True # Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) #-------------------- Set variables --------------------# heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500, heading) leftWall = ai.wallFeeler(500, heading + 45) rightWall = ai.wallFeeler(500, heading - 45) leftWallStraight = ai.wallFeeler(500, heading + 90) rightWallStraight = ai.wallFeeler(500, heading - 90) leftBack = ai.wallFeeler(500, heading + 135) rightBack = ai.wallFeeler(500, heading - 135) backWall = ai.wallFeeler(500, heading - 180) trackWall = ai.wallFeeler(500, tracking) R = (heading - 90) % 360 L = (heading + 90) % 360 aim = ai.aimdir(0) bullet = ai.shotAlert(0) speed = ai.selfSpeed() x = ai.selfX() y = ai.selfY() enemyX1 = ai.screenEnemyXId(0) enemyY1 = ai.screenEnemyYId(0) enemyX2 = ai.screenEnemyXId(1) enemyY2 = ai.screenEnemyYId(1) enemyTeam1 = ai.enemyTeamId(0) enemyTeam2 = ai.enemyTeamId(1) myTeam = ai.selfTeam() coordinate = self.grid[self.counter][1] message = ai.scanMsg(0) # print(enemyX1, enemyY1, enemyX2, enemyY2) # print(myTeam, enemyTeam1, enemyTeam2) # Continually check messages if message != self.MessageBuffer[-1]: self.checkMessage(message) # Check if enemy is on screen # If it is: broadcast location of enemy # If it is not: send message that we lost enemy if enemyX1 != -1 and enemyY1 != -1: print("enemy 1") enemyCoordinate = (enemyX1, enemyY1) self.foundPrey(enemyCoordinate) coordinate = enemyCoordinate elif enemyX2 != -1 and enemyY2 != -1: print("enemy 2") enemyCoordinate = (enemyX2, enemyY2) self.foundPrey(enemyCoordinate) coordinate = enemyCoordinate elif self.foundPreyFlag == True: print("lost prey") self.lostPrey() targetX = coordinate[0] targetY = coordinate[1] toTurn = self.angleToPoint(x, y, targetX, targetY, heading) distance = self.distance(x, targetX, y, targetY) if self.foundPreyFlag == False and self.checking == False: ai.talk("checking! " + str(coordinate)) self.checking = True # If speed is too fast, turn around and thrust to negate velocity if speed > 5: turning = ai.angleDiff(heading, tracking) if abs(turning) > 165 and abs(turning) <= 180: ai.turnLeft(0) ai.turnRight(0) if self.frames % 10 == 0: ai.thrust(1) elif turning <= 165 and turning > 0: ai.turnRight(1) else: ai.turnLeft(1) else: #-------------------- Go to coordinate / enemy --------------------# if abs(toTurn) < 10 and distance > 100: ai.turnLeft(0) ai.turnRight(0) if self.frames % 3 == 0: ai.thrust(1) elif toTurn >= 10: ai.turnLeft(1) elif toTurn <= -10: ai.turnRight(1) if self.foundPreyFlag == True and distance < 150: print("Caught enemy!") ai.quitAI() elif distance < 150: self.markSpotChecked(coordinate, "me") #-------------------- Old turn and thrust rules --------------------# if speed <= 3 and frontWall >= 200: ai.thrust(1) elif trackWall < 50: ai.thrust(1) elif backWall < 40: ai.thrust(1) # Figures out what corner we are in and turns the right directon if (backWall < 30) and (rightWallStraight < 200): ai.turnLeft(1) elif backWall < 30 and (leftWallStraight < 200): ai.turnRight(1) # Walls along our periphery (90 degree feelers) elif leftWallStraight < rightWallStraight and trackWall < 75: ai.turnRight(1) elif leftWallStraight > rightWallStraight and trackWall < 75: ai.turnLeft(1) self.frames = self.frames + 1
def AI_loop(): global frames, frameHistory, generation, current_chrom, population, scores, current_score print("frame", frames) #rules chrom = population[current_chrom][0] when_to_thrust_speed = convert(chrom[0:4]) front_wall_distance_thrust = convert(chrom[4:8]) * 4 back_wall_distance_thrust = convert(chrom[8:12]) * 2 track_wall_distance_thrust = convert(chrom[12:16]) * 4 left_wall_angle = convert(chrom[16:20]) * 3 right_wall_angle = convert(chrom[20:24]) * 3 back_wall_angle = convert(chrom[24:28]) * 10 left_90_wall_angle = convert(chrom[28:32]) * 6 right_90_wall_angle = convert(chrom[32:36]) * 6 left_back_wall_angle = convert(chrom[36:40]) * 9 right_back_wall_angle = convert(chrom[44:48]) * 9 fuzzy_rate = convert(chrom[48:52]) fuzzy_rate_1 = convert(chrom[52:56]) angle_diff_shoot = convert(chrom[56:60]) shot_alert_distance = convert(chrom[60:64]) * 6 rate = fuzzy_rate rate1 = fuzzy_rate_1 #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) #Set variables heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500, heading) leftWall = ai.wallFeeler(500, heading + left_wall_angle) rightWall = ai.wallFeeler(500, heading - right_wall_angle) left90Wall = ai.wallFeeler(500, heading + left_90_wall_angle) right90Wall = ai.wallFeeler(500, heading - right_90_wall_angle) leftbackWall = ai.wallFeeler(500, heading + left_back_wall_angle) rightbackWall = ai.wallFeeler(500, heading - right_back_wall_angle) trackWall = ai.wallFeeler(500, tracking) backWall = ai.wallFeeler(500, heading - back_wall_angle) #Shooting rules if ai.aimdir(0) >= 0 and -angle_diff_shoot <= ai.angleDiff( heading, ai.aimdir(0)) <= angle_diff_shoot and ai.screenEnemyX( 0) >= 0 and ai.screenEnemyY(0) >= 0 and ai.wallBetween( ai.selfX(), ai.selfY(), ai.screenEnemyX(0), ai.screenEnemyY(0)) == -1: ai.fireShot() #Turn rules if ai.aimdir(0) >= 0 and ai.angleDiff( heading, ai.aimdir(0)) > 0 and ai.wallBetween( ai.selfX(), ai.selfY(), ai.screenEnemyX(0), ai.screenEnemyY(0)) == -1: ai.turnLeft(1) #print("aim turn left") elif ai.aimdir(0) >= 0 and ai.angleDiff( heading, ai.aimdir(0)) < 0 and ai.wallBetween( ai.selfX(), ai.selfY(), ai.screenEnemyX(0), ai.screenEnemyY(0)) == -1: ai.turnRight(1) #print("aim turn right") elif left90Wall < right90Wall and minmax(10, (rate * ai.selfSpeed()), 100): ai.turnRight(1) #print("left90wall") elif right90Wall < left90Wall and minmax(10, (rate * ai.selfSpeed()), 100): ai.turnLeft(1) #print("right90wall") elif leftbackWall < minmax(5, (rate1 * ai.selfSpeed()), 50): ai.turnRight(1) #print("leftbackwall") elif rightbackWall < minmax(5, (rate1 * ai.selfSpeed()), 50): ai.turnLeft(1) #print("rightbackwall") #base case turn rules elif leftWall < rightWall: ai.turnRight(1) else: ai.turnLeft(1) #Thrust rules if ai.selfSpeed( ) <= when_to_thrust_speed and frontWall >= front_wall_distance_thrust: ai.thrust(1) #print("thrust 1") #dynamic thrust away from walls elif trackWall < track_wall_distance_thrust: ai.thrust(1) #print("thrust 2") #thrust away from back wall elif backWall < back_wall_distance_thrust: ai.thrust(1) #print("thrust 3") #Shot avoidance elif ai.shotAlert(0) >= 0 and ai.shotAlert( 0) <= shot_alert_distance and ai.shotVelDir( 0) != -1 and ai.angleDiff(heading, ai.shotVelDir(0)) > 0: #print("shotveldir turn left") ai.turnLeft(1) ai.thrust(1) elif ai.shotAlert(0) >= 0 and ai.shotAlert( 0) <= shot_alert_distance and ai.shotVelDir( 0) != -1 and ai.angleDiff(heading, ai.shotVelDir(0)) < 0: #print("shotveldir turn right") ai.turnRight(1) ai.thrust(1) #tracks frames alive if ai.selfAlive() == 1: frames += 1 elif ai.selfAlive() == 0 and frames == 0: pass else: #adds every fitness to a list to avoid the issue of xpilot score never resetting scores.append(ai.selfScore()) #base case if len(scores) < 2: current_score = scores[-1] else: current_score = scores[-1] - scores[-2] if current_score <= 0: current_score = 2 population[current_chrom][1] = (frames**2) * current_score print("fitness: ", population[current_chrom][1]) current_chrom += 1 print("current_chrom is: ", current_chrom) if current_chrom >= len(population): current_chrom = 0 print("current_chrom is: ", current_chrom) generation += 1 fitness_scores = fitness(population) #writes highest fitness agent to file if generation % 5 == 0: print("first write") current_fitness = max(fitness_scores) best_individual_index = fitness_scores.index(current_fitness) best_individual = population[best_individual_index][0] newfile = open("GA_output.txt", "a+") newfile.write("Generation: ") newfile.write("\n") newfile.write(str(generation)) newfile.write("\n") newfile.write("Best individual: ") newfile.write("\n") newfile.write(str(best_individual)) newfile.write("\n") newfile.write("Best fitness: ") newfile.write("\n") newfile.write(str(current_fitness)) newfile.write("\n") newfile.close() chrom_pair = top_individuals(population, fitness_scores) new_pop = [] new_pop += crossover(chrom_pair) while (len(new_pop) < population_size): new_pop += crossover(chrom_pair) population = [] population = new_pop #writes population to file if generation % 10 == 0: print("second write") popfile = open("GA_pop.txt", "a+") popfile.write("Generation: ") popfile.write("\n") popfile.write(str(generation)) popfile.write("\n") for i in population: popfile.write(str(i)) popfile.write("\n") popfile.write("\n") popfile.close() frames = 0
def AI_loop(self): # Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) #-------------------- Set variables --------------------# heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500, heading) leftWall = ai.wallFeeler(500, heading + 45) rightWall = ai.wallFeeler(500, heading - 45) leftWallStraight = ai.wallFeeler(500, heading + 90) rightWallStraight = ai.wallFeeler(500, heading - 90) leftBack = ai.wallFeeler(500, heading + 135) rightBack = ai.wallFeeler(500, heading - 135) backWall = ai.wallFeeler(500, heading - 180) trackWall = ai.wallFeeler(500, tracking) R = (heading - 90) % 360 L = (heading + 90) % 360 aim = ai.aimdir(0) bullet = ai.shotAlert(0) speed = ai.selfSpeed() x = ai.selfX() y = ai.selfY() coordinate = self.grid[self.counter][1] targetX = coordinate[0] targetY = coordinate[1] toTurn = self.angleToPoint(x, y, targetX, targetY, heading) distance = self.distance(x, targetX, y, targetY) if speed > 5: turning = ai.angleDiff(heading, tracking) if abs(turning) > 165 and abs(turning) <= 180: ai.turnLeft(0) ai.turnRight(0) if self.frames % 10 == 0: ai.thrust(1) elif abs(turning) <= 165: ai.turnRight(1) elif negateAngle >= 10: ai.turnLeft(1) else: #-------------------- Print statements --------------------# # print("(x, y): (",x,",",y,")") print("destination: ", self.grid[self.counter % self.gridLength]) # print("distance: ", distance) # print("closestEnemyX: ", targetX) # print("closestEnemyY: ", targetY) # print("screen enemy? ", ai.screenEnemyXId(ai.closestShipId())) # print("toTurn: ", toTurn) print("speed: ", speed) print("") #-------------------- Move to target point --------------------# if abs(toTurn) < 10 and distance > 100: print("Lock!") ai.turnLeft(0) ai.turnRight(0) if self.frames % 3 == 0: ai.thrust(1) elif toTurn >= 10: ai.turnLeft(1) elif toTurn <= -10: ai.turnRight(1) if distance < 200: self.markSpotChecked(coordinate) self.checkSearchComplete() #-------------------- Thrust rules --------------------# if speed <= 3 and frontWall >= 200: ai.thrust(1) elif trackWall < 50: ai.thrust(1) elif backWall < 40: ai.thrust(1) #---------------- Turn rules ----------------# # Figures out what corner we are in and turns the right directon if (backWall < 30) and (rightWallStraight < 200): ai.turnLeft(1) elif backWall < 30 and (leftWallStraight < 200): ai.turnRight(1) # Walls along our periphery (90 degree feelers) elif leftWallStraight < rightWallStraight and trackWall < 75: ai.turnRight(1) elif leftWallStraight > rightWallStraight and trackWall < 75: ai.turnLeft(1) self.frames = self.frames + 1
def AI_loop(): chrom = [ 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0 ] when_to_thrust_speed = convert(chrom[0:4]) front_wall_distance_thrust = convert(chrom[4:8]) * 4 back_wall_distance_thrust = convert(chrom[8:12]) * 2 track_wall_distance_thrust = convert(chrom[12:16]) * 4 left_wall_angle = convert(chrom[16:20]) * 3 right_wall_angle = convert(chrom[20:24]) * 3 back_wall_angle = convert(chrom[24:28]) * 10 left_90_wall_angle = convert(chrom[28:32]) * 6 right_90_wall_angle = convert(chrom[32:36]) * 6 left_back_wall_angle = convert(chrom[36:40]) * 9 right_back_wall_angle = convert(chrom[44:48]) * 9 fuzzy_rate = convert(chrom[48:52]) fuzzy_rate_1 = convert(chrom[52:56]) angle_diff_shoot = convert(chrom[56:60]) shot_alert_distance = convert(chrom[60:64]) * 6 rate = fuzzy_rate rate1 = fuzzy_rate_1 #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) #Set variables heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500, heading) leftWall = ai.wallFeeler(500, heading + left_wall_angle) rightWall = ai.wallFeeler(500, heading - right_wall_angle) left90Wall = ai.wallFeeler(500, heading + left_90_wall_angle) right90Wall = ai.wallFeeler(500, heading - right_90_wall_angle) leftbackWall = ai.wallFeeler(500, heading + left_back_wall_angle) rightbackWall = ai.wallFeeler(500, heading - right_back_wall_angle) trackWall = ai.wallFeeler(500, tracking) backWall = ai.wallFeeler(500, heading - back_wall_angle) #Shooting rule - checks whether theres an enemy to aim at using aimdir, #and then if we're pointing at them within 10 degrees #check whether theres a wall between us and the enemy; if there is not then we shoot if ai.aimdir(0) >= 0 and -angle_diff_shoot <= ai.angleDiff( heading, ai.aimdir(0)) <= angle_diff_shoot and ai.screenEnemyX( 0) >= 0 and ai.screenEnemyY(0) >= 0 and ai.wallBetween( ai.selfX(), ai.selfY(), ai.screenEnemyX(0), ai.screenEnemyY(0)) == -1: ai.fireShot() #Turn rules #standard check for enemy proximity and wall between us, #and if we're not aiming at them the angle is corrected if ai.aimdir(0) >= 0 and ai.angleDiff( heading, ai.aimdir(0)) > 0 and ai.wallBetween( ai.selfX(), ai.selfY(), ai.screenEnemyX(0), ai.screenEnemyY(0)) == -1: ai.turnLeft(1) print("aim turn left") elif ai.aimdir(0) >= 0 and ai.angleDiff( heading, ai.aimdir(0)) < 0 and ai.wallBetween( ai.selfX(), ai.selfY(), ai.screenEnemyX(0), ai.screenEnemyY(0)) == -1: ai.turnRight(1) print("aim turn right") #misc turn rules with fuzzy logic elif left90Wall < right90Wall and minmax(10, (rate * ai.selfSpeed()), 100): ai.turnRight(1) print("left90wall") elif right90Wall < left90Wall and minmax(10, (rate * ai.selfSpeed()), 100): ai.turnLeft(1) print("right90wall") elif leftbackWall < minmax(5, (rate1 * ai.selfSpeed()), 50): ai.turnRight(1) print("leftbackwall") elif rightbackWall < minmax(5, (rate1 * ai.selfSpeed()), 50): ai.turnLeft(1) print("rightbackwall") #default/base case turn rules elif leftWall < rightWall: ai.turnRight(1) else: ai.turnLeft(1) #Thrust rules #rule for speeding up when no wall in front of us if ai.selfSpeed( ) <= when_to_thrust_speed and frontWall >= front_wall_distance_thrust: ai.thrust(1) print("thrust 1") #dynamic thrust away from walls elif trackWall < track_wall_distance_thrust: ai.thrust(1) print("thrust 2") #thrust away from back wall elif backWall < back_wall_distance_thrust: ai.thrust(1) print("thrust 3") #this block handles dodging enemy bullets elif ai.shotAlert(0) >= 0 and ai.shotAlert( 0) <= shot_alert_distance and ai.shotVelDir( 0) != -1 and ai.angleDiff(heading, ai.shotVelDir(0)) > 0: print("shotveldir turn left") ai.turnLeft(1) ai.thrust(1) elif ai.shotAlert(0) >= 0 and ai.shotAlert( 0) <= shot_alert_distance and ai.shotVelDir( 0) != -1 and ai.angleDiff(heading, ai.shotVelDir(0)) < 0: print("shotveldir turn right") ai.turnRight(1) ai.thrust(1)
def AI_loop(): #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) ai.setTurnSpeed(45) #noshoot simple2 v1 - possibly broken #weight = [[0.7493857316521443, 0.13368056995306654, -0.47767010506248414, 0.36303490376111747, 0.3699402939846066, -0.24513421555956436, 0.6049213422682447, -1.002771350490762, 0.04035249957935825, -0.28434589370049973, 0.06045481719428707, -0.7059773487995405], [0.4597751718875, 0.48527265677711917, 1.1633270644302531, -0.2617787944640836, 0.43969814249154665, 0.39105202732983013, -0.4842763268769806, 0.0139642821717396, 0.6316767202549712, -0.7261062652316246, 0.21262210805420517, 0.5641099350636366], [-0.3874172140692371, 0.7651295146994167, 1.0395098788413182, 1.186226846675026, -0.025235379424306762, 0.2946735626872294, 0.8189904988668917, -0.3112836835374087, 0.4561011502092862, -1.117805735032487, -0.43961810490175446, -0.4119472393430895], [0.22275511634133816, -0.6648437205568158, -0.8414740640064268, 0.8056440111521608, 0.015267716015499746, 0.41334996924272127, 0.4081963555038903, -0.1419511839287509, 0.45361416054410414, -0.8794849582102071, -0.3468746833944422, 0.5401415708615188], [0.5074970117306209, 0.5819675141877677, 0.6517899284876814, 0.46691400605473293, 0.32604510520447944, 0.5968926122763236, 0.5310482664503053, -0.680392116654488, 0.8673231237747582, 0.33285892719317295, 0.8399077545012879, 0.6164215093257798], [-0.372562013299741, -0.19652620269354013, 0.1437357080878078, 0.4658598892474184, 0.2622911587442708, -0.0978653491300881], [-0.8758502232674676, -0.2171515591378693, -2.993752695121232, -0.35299785185297505, 0.23130479682141922, -0.3366867315248932]] #same #weight = [[-0.5615458044552419, 0.18357035281974562, 0.03349259503126993, 0.7384951638825633, -0.30798810007905386, 0.30573186272807085, 0.854959406907431, -0.7415861859492735, -0.7738387875893121, 0.02855354677310282, -0.851478966174285, -0.4098017778685181], [-0.207370684933253, -0.013364767376613134, -0.9163625758710611, 0.7147484720369136, 0.4332939609435104, 0.08179173241171495, -0.7872472562071717, -0.028481692524635203, 0.9018021433254303, 0.44174414866442663, -0.9254417448428363, -0.8782722048252558], [0.33830929947647237, 0.3662059060118147, 0.3811711776833437, 0.24042392561994674, 0.5277499126295441, -0.0004866655690337176, 0.25640579185352463, -0.7633986561071578, -0.612156341670209, 0.8230711072150679, 0.760953671186351, -0.2573796666700781], [-0.504034389497162, -0.5579761993837166, -0.5804468446739354, 0.20559197382639358, 0.2633102441141902, 0.6523171620389138, -0.024442707325193276, 0.20991650483980787, 0.8242995112997102, -0.310268650118638, 0.6134846337134139, -0.1333594123873779], [-0.1482061081648374, -0.8156028525698128, 0.5620698705963493, 0.3369535386843364, 0.4950101349517008, 0.632041030208815, 0.2282786987810209, 0.5886322102158713, 0.1479714498784525, -0.35843514023521145, 0.7822417167093876, -0.6863908492221918], [0.19475966937630487, 0.3329038845401951, -0.4194515125286082, -1.0059783572483236, 0.4401534681618835, -0.14131035905437314], [-0.1489506388852606, -0.7142411448348961, 0.19491176823686687, -0.7258125795197734, -0.5016315182547347, 1.187683861246764]] #noshoot simple2 v1 #weight = [[4.023914862289385, -11.939688383204079, -15.825568188856662, -8.91142185823263, 2.641203914119205, -0.5129014819329881, 0.9220419943089314, 0.3895906088166904, -3.314207628630927, 1.467458787811278, 1.0256723985314264, 6.790853759075572], [0.46927642890835647, 0.4119664313516612, 1.0805195819839035, -22.587191583019706, -2.0569865767257087, 1.0122406403957074, 0.7655020473448081, 0.5363534804959299, -0.09153880599832058, 1.742638802899449, 0.604362216981221, -5.437549122082703], [-7.860553953097792, 8.381751807757572, 16.129268910929408, 0.8192147369369929, 12.621334155351937, 1.1871517887014937, 1.3270695309760896, 1.0735505581082165, -2.1305919492192547, 0.8033262515099523, 3.3317152348735313, -1.1046970930734303], [0.4398449547641411, 1.912802187200376, 1.5190820053279013, 0.05054235950852018, 20.89903152269866, -5.003395008994748, -2.6880139668653324, -7.882075146152547, 7.312459204984362, 0.7725581247271933, -3.2005214579831134, 8.556187322708842], [-1.293677418426306, 1.0762585514923537, 2.9472553959491394, -2.8811018920854745, 20.39410027291124, 3.5575387211971545, -4.928681592073799, 3.91012465174139, -0.6466184042394076, 8.419255646279453, -8.094268776239682, 19.5220882165644], [0.3806641134895386, -0.054247151061047154, 0.35553915476967757, -0.16909223457447353, 0.6749672736601655, -0.19785778477211138], [6.21846263437043, 13.27919055895352, 5.556186398879765, 1.9758063219353386, 3.685290720905768, 11.4029046390971]] #weight = [[0.5903138120766798, 0.3877986755669686, -0.9141386987535192, -0.1976691845132495, 0.20203743452617146, -3.8075577538969068, 13.355367631879064, -4.451492883287705, -4.077459994350015, -2.8670604965816433, -4.7237141988262215, 4.196577955775335], [0.05788957126040142, 0.7553202993193877, -0.41293776536874083, 0.9699420358471046, -0.39940905986885467, -0.7501531314002139, -3.649664715012045, -4.480417131687637, 12.40189634710716, -3.5479446525980323, -5.617634895580113, 4.614443478920718], [-0.44964748196431087, -0.21623652235598786, 0.5866855307562749, 2.6966017037464547, -0.2198767358187771, -15.121568447637916, 5.394174355851121, 3.3357101263144284, 5.142941080162113, 4.396587735322672, 6.27965132359125, -1.7132992179558508], [-0.8420976477874832, 3.6695944609982, 3.985187073998181, 11.839206173737303, -5.338358329529615, 12.584411691032383, -3.6258238911963225, -9.100219517619708, 0.09757837890948427, 0.26347032883307564, -2.317810633312963, 3.488522703736898], [0.7765991306851521, 0.28898396896441564, 0.7418514532805458, 7.79799228304993, -0.19002509820555794, -0.4950254716867189, 1.674108868938578, -2.550479398095525, -0.4777881148214889, -17.68616848936312, 17.798127474785755, 3.564677234214063], [-7.8104601458246075, -2.0636289766378315, -8.171829518484577, -0.3002860633762538, -0.8003364861508999, -8.88545431866241], [-9.931271155016605, -8.304191180682096, -4.721651527085654, -11.413401995134363, -6.807105641677094, -4.2517323859898255]] #take 3 #weight = [[3.2209677211590364, 3.197844521358916, 1.0178700774531555, 2.6850832852265705, -0.1142410857208976, -7.424760693950065, 2.4741068398654735, -2.2455337118424423, 0.7975567187947812, -7.14879174218826, 1.1236926484785208, 1.0893799362829708], [0.8039483127966134, 2.0360025213584287, 0.01727196345640146, 13.743242184336747, -3.1131725731697797, 3.551772323183245, -1.912134715951023, 6.3466547648380365, 2.7583972445682843, -8.543348277242536, 1.0695972197298327, 1.0968548560479523], [-1.9711628616688408, -2.915258703528061, -0.6856763056229077, 5.775022292258987, -0.9242292134264676, -5.2290301586614545, 1.554497111395412, -8.663422012897401, 3.434867742464676, -1.4626063376098368, 3.1916811250980226, -3.1266957996982083], [-2.963581011499582, -1.8333571215071727, 0.19431283257511642, 12.685505979633772, 5.629563357825744, 2.269402859201827, -0.5394798674782302, 0.5415330617135145, -1.3492223641876873, -2.3782036784139104, -1.6868806998589756, -2.566848157895665], [-2.1971772106385568, -3.046613937692231, -1.91992660803775, 6.63802500331367, -13.090973918413972, 2.0019783380453955, 1.5786044885623458, -1.1226639661286304, -0.8816140948702889, -0.6041236731069092, 0.4128577493527515, -9.236718652388456], [-0.37898780078879885, 0.02278416261917311, -0.7370299412447531, 0.4580826382451188, 0.024909816638153417, -0.2986982689652905], [-6.204456817434451, -7.054321617074455, -3.8731103597961956, -7.0447149929917146, -6.223052160580929, -15.546591666508577]] #weight = [[1.1620356523045294, 1.2293119820243932, -1.0680281171990968, -5.292742962549776, 3.004567388617913, 0.1416865776270463, 3.291787739904783, 3.311779449153159, 0.14350525985680226, 1.864065320111765, 0.41531949262324336, -0.7533626568752921], [2.6058003821118527, 0.9844458916296726, -2.031523030007777, -3.4422006288675315, 4.5638626155289055, -2.7046080365173837, 1.5356155037759958, 2.143460607268979, 3.9199241782825687, 0.12721742246873802, -0.8673469875291382, -1.8507505784965346], [-0.6131784294183935, 0.4639547932071712, -0.2666315961058117, 7.5292821094228755, -1.087211170794136, -0.7293843967199962, 0.4755491742014118, 0.4206888297192853, -0.8152826105125003, 1.988359326013337, -5.637090150274117, 0.5993755933965147], [0.27691971567025647, 1.037850843325554, -0.8250576728298599, -2.000417570912899, -0.006391527390813737, 2.0837950209487466, -8.24238052083867, 2.073287983133908, 3.2529633929820907, 2.1453759622986524, 3.7417070714472893, -2.9435663281508724], [-0.5037569895779601, -0.09031006667126633, -0.5311072081881074, 0.9440264182616986, 0.783774066571815, 6.828375559954358, -2.841644500387658, 0.24901014690965492, -4.849174297326825, -1.5945524577293186, -4.823283932380879, 1.1962232130136108], [1.4042452333993327, -0.09263191061453735, 0.8155734671747938, 5.256825832477101, 3.7371321136701705, 6.574206973322576], [13.323880256265307, -2.429025764741311, -10.985707613602697, 5.331771733353978, -0.12615902379461702, 15.191420141027539]] #take 4 #weight = [[0.1906964794417142, -1.3230251087714693, -1.8568527275491726, -10.570510924730712, 0.3754935945207968, -4.767279359714083, 0.11809759894653031, -6.033443845654109, -4.862563766686397, -1.5992520992754746, 7.726616433374799, -3.552685892017083], [0.3653010148791735, 1.6736547762277736, 0.4531478751025384, -16.54229219042565, -3.440356011229119, 1.0104044032989574, -1.5155008934004035, 0.10642496061430406, -0.31316504641192483, 3.6828030284027515, -0.7489883459127186, -1.5244542545724582], [3.764701498917189, 0.4439295275324288, -2.9864503359860985, -3.9316071635513206, 5.798674529890128, -5.74883908980071, 5.398546661400034, -2.51467872126794, 10.108154232633654, -2.18382803218839, 2.5521301844943816, 3.311614056240679], [3.540372052106104, 4.504838909273797, 0.9723232714577832, -8.437301256316747, 14.998025152577217, -0.31994218366769667, -2.907161494453055, 3.893824258473095, -0.7579119727276817, 5.473585535436292, -3.2397908440984766, 15.192742537984023], [-6.248680428157617, -6.451873887564568, 1.6916836827123973, -4.655942296742202, 16.84212812043791, 5.734711342713387, 0.2955864473988734, 1.791898461633518, -3.4668510416701595, -1.358433980522392, -1.1057313703313203, 0.6888252016526282], [-0.43458701659431115, -0.0012780178353029815, -0.3084730481531892, 0.45069433382083834, 0.11685910089310178, -0.38449878977835567], [3.853866205452628, 12.037185197898191, 1.8699413530857774, 5.001790072421261, 4.513316028443307, 9.851232302101327]] #weight = [[1.2911306905979911, -0.24861004977707912, -0.3569265073483646, 6.428936726785303, -1.3066626434454807, 0.25686627368220305, 0.9109367109212936, 0.16801829318526124, -0.20947845384297986, 1.2064241958740287, 0.036856251428802896, -3.359023278463905], [0.8036278040339718, 0.08012145204557049, 0.6845458738830329, 5.665809973883479, -0.9210048722891027, 1.3932208121673026, 1.046083232807299, 0.7941648248360582, 0.9365855847155237, 1.459603497851585, -0.5332056328831426, -2.534773939928277], [0.13301078275476066, 0.3429847838792201, -1.0338159784473917, 4.850766016537791, 0.7802072613774678, 1.2836937010475253, -0.8584360890917163, 1.7672832265369043, 0.10738236989054603, 3.4517636983002387, 0.22658851691351473, -1.0683529525811006], [1.6450210175622832, -0.28557720210974497, -0.2443112896936013, 6.8747070212198045, -0.8271033896420884, 0.2800592224187591, 0.5652744631888489, 0.08792418368229415, 0.9155105124974535, 0.46138821886651926, -0.3837164120204661, -3.494842813175506], [-0.8165377903719206, 1.958062852731677, 2.000566970645578, 5.919031622286524, 0.5506236423988042, 0.5494849931384184, 1.7160531008225108, 0.5260681781001207, 2.06495028663279, -0.07306752095214097, -1.204154609328308, -4.01239045823013], [-0.6146224030404228, 0.3233086944120275, 5.3979041539672545, -4.401300546048576, -0.42678298976091805, 1.0758830778504247], [-5.977941738072086, 0.019369137899827416, -0.5522710341025945, -7.13480943116727, -4.873784872189164, -16.38430927507949]] #over break training weight = [[ 0.3662869049519842, -0.8570465997089849, -1.0415622777532179, 0.4420706041485171, 0.009019607340448946, 10.71120549250932, -12.382299178044326, 10.244684059761504, -4.7714116184482425, 10.703496354982395, -0.8400740885526794, 2.1209753284753745 ], [ 2.5366260663128686, 1.068830514524183, -2.0352964619508715, -0.4999108962144593, 20.533875500405504, -1.301731900907607, 0.3103574877473953, -0.6500134665269202, 0.5084981306498488, -0.8059254394827501, 1.31308616755389, 15.873718577684429 ], [ 0.08005904547677181, -0.007564753721625019, -0.10037179685269433, -30.286524359136706, 1.0348747725041256, -0.9129196441653706, 0.3754957498625551, -1.305163204786704, -0.30909410903499906, 1.3574890310465415, -0.2886464224612783, -5.911566724871949 ], [ 4.655481170315177, -1.2991521769114085, -4.454652256174474, 4.274677448402512, 16.502421922725226, 12.710289689086315, -9.738471684679293, 9.865851212762863, -8.873570414630043, -0.1285739247431209, -14.804016099227272, 10.638993200840254 ], [ -13.975667825847953, 13.618115550695093, 27.871087273931305, 1.7052627216183622, -16.717674225226972, 0.8131962686148689, 0.6430161349620291, -0.6832651795038519, 1.6123037795473343, 3.7701435389411695, -2.729257195826183, -2.0449519807080896 ], [ 0.6784559764050078, -0.30818410563793897, -0.12048266318505906, 0.7386778766766025, 0.18813592750492103, 0.9656707078851317 ], [ 7.248480099597683, 9.862850677133501, 18.95475459828898, 1.981941403265762, 7.509742979506548, 19.364672423856124 ]] sendData = getSendData() output = getOutput(sendData, 11, 5, 2, weight) turn, thrust = "N", "N" if output[0] >= .55: ai.turnRight(1) turn = "R" elif output[0] < .45: ai.turnLeft(1) turn = "L" ai.setTurnSpeed(abs(output[0] - .5) * 100) if output[1] > random(): ai.thrust(1) thrust = "Y" if ai.selfAlive(): print(turn + " " + str(round(output[0], 3)) + " | " + thrust + " " + str(round(output[1], 3)))
def AI_loop(): #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) #Set variables heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500,heading) left45Wall = ai.wallFeeler(500,heading+45) right45Wall = ai.wallFeeler(500,heading-45) left90Wall = ai.wallFeeler(500,heading+90) right90Wall = ai.wallFeeler(500,heading-90) left135Wall = ai.wallFeeler(500,heading+135) right135Wall = ai.wallFeeler(500,heading-135) backWall = ai.wallFeeler(500,heading-180) trackWall = ai.wallFeeler(500,tracking) result_list = [] risk_list = [] for i in range(8): Degree = tracking+(45*i) Speed = ai.selfSpeed() Distance = ai.wallFeeler(10000,tracking+(45*i)) result = Closing_Rate(Degree, tracking, Speed, Distance) result_list.append(result) ### Fuzzy membership ### closing_rate, distance = Closing_Rate(Degree, tracking, Speed, Distance) low, medium, fast = Fuzzy_Speed(closing_rate) close, far = Fuzzy_Distance(distance) risk = Fuzzy_Risk(low, medium, fast, close, far) risk_list.append(risk) ## Get the direction in deg that is most risky for the robot ## max_risk = max(risk_list) track_risk = (tracking + (risk_list.index(max_risk)*45) % 360) min_risk = min(risk_list) ####### Shooting Ennemies ######## ##Find the closest ennemy## ClosestID = ai.closestShipId() #print(ClosestID) ##Get the closest ennemy direction and speed## ClosestSpeed = ai.enemySpeedId(ClosestID) ClosestDir = ai.enemyTrackingDegId(ClosestID) ## Get the lockheadingdeg ## enemy = ai.lockClose() #print(enemy) head = ai.lockHeadingDeg() #print(head) enemyDist = ai.selfLockDist() #print(enemyDist, ClosestSpeed, ClosestDir, head) int1, int2, int3, int4, int5 = Data(enemyDist, ClosestSpeed, ClosestDir, head, heading, tracking) output = Out(int1, int2, int3, int4, int5) #print(output) if(output > 0.5): addDeg = output * 20 else: addDeg = (output -0.5) * 20 * -1 ## Get the angles on both side between tracking and heading ## dist = (heading - track_risk) % 360 dist2 = (360 - dist) % 360 ## Production system rules based off fuzzy output ## if(dist <= 130 and dist >= 0 and ai.selfSpeed() > 0 and max_risk >= 75): ai.turnLeft(1) #print("turning left") elif(dist2 <= 130 and dist2 >= 0 and ai.selfSpeed() > 0 and max_risk >= 75): ai.turnRight(1) #print("turning right") elif(ai.selfSpeed() <= 10): ai.thrust(1) #print("thrust") elif(trackWall <= 150): ai.thrust(1) #print("thrust") elif(enemyDist <= 400 and heading > (head) and enemyDist != 0): ai.turnRight(1) ai.fireShot() elif(enemyDist <= 400 and heading < (head) and enemyDist != 0): ai.turnLeft(1) ai.fireShot() elif(enemyDist > 400 and heading > (head + addDeg) and enemyDist != 0): ai.turnRight(1) ai.fireShot() elif(enemyDist > 400 and heading < (head + addDeg) and enemyDist != 0): ai.turnLeft(1) ai.fireShot() else: #print("chilling") ai.thrust(0) ai.fireShot()
def AI_loop(): """ The main loop for this agent! Greenock is a rule-based expert system. """ # Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) # Heuristics sideFeelerOffset = 15 # Offsets from heading for wall feelers (degrees) nearLimit = 20 * ai.selfSpeed( ) # Threshold for close objects (xp distance units) shotDanger = 80 # Threshold for close bullets (xp distance units) # Reset everything else ai.setTurnSpeedDeg(20) # Artificial handicap! # Acquire information heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontLeftWall = ai.wallFeeler(500, heading + sideFeelerOffset) frontRightWall = ai.wallFeeler(500, heading - sideFeelerOffset) rshipnum = ai.closestShipId() # Combat decisions if (ai.shotAlert(0) > -1) and (ai.shotAlert(0) < shotDanger): ai.turnToDeg(angleDiff(heading, ai.angleAdd(ai.shot_idir(0), 90))) ai.thrust(1) elif (ai.closestShipId() > -1): ai.turnToDeg(angleDiff(heading, ai.aimdir(ai.closestShipId()))) ai.fireShot() elif (rshipnum > -1): ai.turnToDeg(angleDiff(heading, ai.aimdir(ai.closestShipId))) if (ai.selfSpeed() < 10): ai.thrust(1) else: ai.fireShot() # Navigation decisions if ((frontRightWall == frontLeftWall) and (frontRightWall < nearLimit) and (ai.selfSpeed() > 1)): ai.turnToDeg(angleDiff(heading, ai.angleAdd(180, ai.selfTrackingDeg()))) ai.thrust(1) elif ((frontRightWall < frontLeftWall) and (frontRightWall < nearLimit) and (ai.selfSpeed() > 1)): ai.turnToDeg( angleDiff(heading, ai.angleAdd(180, ai.angleAdd(-15, ai.selfTrackingDeg())))) ai.thrust(1) elif ((frontRightWall > frontLeftWall) and (frontRightWall < nearLimit) and (ai.selfSpeed() > 1)): ai.turnToDeg( angleDiff(heading, ai.angleAdd(180, ai.angleAdd(15, ai.selfTrackingDeg())))) ai.thrust(1)
def AI_loop(): ai.turnLeft(1)
def AI_loop(): """ The main loop for this agent! Prod.py is a rule-based expert system. """ # Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) # Heuristics sideFeelerOffset = 65 # Offsets from heading for wall feelers (degrees) perpFeelerOffset = 90 # (degrees) trackFeelerOffset = 45 # (degrees) nearLimit = 150 # Threshold for a relatively "close" object (xp distance units) nearLimitThreat = 300 # Threshold for a "very close" object (xp distance units) shotDanger = 130 # Threshold for relatively "close" bullets (xp distance units) speedLimit = 5 # (xp speed units) powerHigh = 45 # (xp thrust power units) powerLow = 20 # (xp thrust power units) targetingAccuracy = 5 # Tolerance from heading within which firing is OK (degrees) # Reset everything else ai.setTurnSpeedDeg(20) # Artificial handicap! ai.setPower(powerLow) # Acquire information heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) feelers = [] heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500, heading) leftWall = ai.wallFeeler(500, heading + perpFeelerOffset) rightWall = ai.wallFeeler(500, heading - perpFeelerOffset) trackWall = ai.wallFeeler(500, tracking) rearWall = ai.wallFeeler(500, heading - 180) backLeftWall = ai.wallFeeler(500, heading + 135) backRightWall = ai.wallFeeler(500, heading - 135) frontLeftWall = ai.wallFeeler(500, heading + 45) frontRightWall = ai.wallFeeler(500, heading - 45) feelers.append(frontWall) feelers.append(leftWall) feelers.append(rightWall) feelers.append(trackWall) feelers.append(rearWall) feelers.append(backLeftWall) feelers.append(backRightWall) feelers.append(frontLeftWall) feelers.append(frontRightWall) # Collect distances if ai.enemyDistanceId(ai.closestShipId()) > 0: closestPlayerDistance = ai.enemyDistanceId(ai.closestShipId()) else: closestPlayerDistance = math.inf if ai.shotDist(0) > 0: closestBulletDistance = ai.shotDist(0) else: closestBulletDistance = math.inf dcw = min(feelers) distToNearestThreat = min(closestPlayerDistance, closestBulletDistance) # Assign priority to nearest threat if closestBulletDistance <= dcw and closestBulletDistance <= closestPlayerDistance: # if closest threat is a bullet priority = 1 elif dcw <= closestPlayerDistance and dcw <= closestBulletDistance: # if closest threat is a wall priority = 2 else: # closest threat is a player priority = 3 if distToNearestThreat < nearLimitThreat: ai.setPower(powerHigh) # If the closest threat is a bullet if priority == 1: m = angleToPointDeg((ai.selfX(), ai.selfY()), (ai.shotX(0), ai.shotY(0))) if m >= 0: ai.turnRight(1) else: ai.turnLeft(1) if ai.shotAlert(0) < shotDanger: ai.thrust(1) # If the closest threat is a wall elif priority == 2: # Thrust if ai.selfSpeed() <= speedLimit: ai.thrust(1) elif trackWall < nearLimit and angleDiff(heading, tracking) > 90: ai.thrust(1) elif rearWall < nearLimit and angleDiff(heading, tracking) > 90: ai.thrust(1) # Turn if trackWall < nearLimit and leftWall < rightWall: ai.turnRight(1) elif trackWall < nearLimit and rightWall < leftWall: ai.turnLeft(1) elif backLeftWall < nearLimit and rightWall > 50: ai.turnRight(1) elif backRightWall < nearLimit and leftWall > 50: ai.turnLeft(1) elif frontRightWall < nearLimit: ai.turnLeft(1) elif frontLeftWall < nearLimit: ai.turnRight(1) # If the closest threat is a player elif priority == 3: m = angleToPointDeg((ai.selfX(), ai.selfY()), (ai.shotX(0), ai.shotY(0))) if m <= 0: ai.turnRight(1) else: ai.turnLeft(1) if ai.selfHeadingDeg() <= (targetingAccuracy + angleToPointDeg( (ai.selfX(), ai.selfY()), (ai.screenEnemyX(0), ai.screenEnemyY(0)))) and ai.selfHeadingDeg( ) >= (targetingAccuracy - angleToPointDeg( (ai.selfX(), ai.selfY()), (ai.screenEnemyX(0), ai.screenEnemyY(0)))): ai.fireShot()
def AI_loop(): #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) ai.setTurnSpeed(45) turn, thrust = 0.5, 0 maxSpeed = 3 shotAngle = 9 wallClose = 12 heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) trackWall = ai.wallFeeler(500, tracking) trackLWall = ai.wallFeeler(500, tracking + 3) trackRWall = ai.wallFeeler(500, tracking - 3) frontWall = ai.wallFeeler(500, heading) flWall = ai.wallFeeler(500, heading + 10) frWall = ai.wallFeeler(500, heading - 10) leftWall = ai.wallFeeler(500, heading + 90) rightWall = ai.wallFeeler(500, heading - 90) trackWall = ai.wallFeeler(500, tracking) backWall = ai.wallFeeler(500, heading - 180) backLeftWall = ai.wallFeeler(500, heading - 185) backRightWall = ai.wallFeeler(500, heading - 175) speed = ai.selfSpeed() closest = min(frontWall, leftWall, rightWall, backWall, flWall, frWall) def closestWall(x): #Find the closest Wall return { frontWall: 1, leftWall: 2, rightWall: 3, backWall: 4, flWall: 5, frWall: 6, }[x] wallNum = closestWall(closest) crashWall = min( trackWall, trackLWall, trackRWall ) #The wall we are likely to crash into if we continue on our current course #Rules for turning if wallNum == 1 or wallNum == 5 or wallNum == 6: #Front Wall is Closest (Turn Away From It) ai.turnLeft(1) turn = 0 elif wallNum == 2: # Left Wall is Closest (Turn Away From It) ai.turnRight(1) turn = 1 elif wallNum == 3: #Right Wall is Closest (Turn Away From It) ai.turnLeft(1) turn = 0 else: #Back Wall is closest- turn so that we are facing directly away from it if backLeftWall < backRightWall: ai.turnRight( 1) #We need to turn right to face more directly away from it turn = 1 if backLeftWall > backRightWall: # We need to turn left to face more directly away from it ai.turnLeft(1) turn = 0 #Rules for thrusting if speed < maxSpeed and frontWall > 100: #If we are moving slowly and we won't ram into anything, accelerate ai.thrust(1) thrust = 1 elif trackWall < 250 and ( ai.angleDiff(heading, tracking) > 120 ): #If we are getting close to a wall, and we can thrust away from it, do so ai.thrust(1) thrust = 1 elif backWall < 20: #If there is a wall very close behind us, get away from it ai.thrust(1) thrust = 1
def AI_loop(): global count_frame, loop, boolean, score, population_size, chromosome_size, population, mutation_prob, crossover_prob, fitness_list, generation, generation_size, first_time, done_learning #Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) ## Get A Chromosome in the Population -- Eventually Will go through each individual in the population ## current_chromosome = population[loop] ## Transform Each Gene insisde A Single Selected Chromosome. 0s & 1s Are Turned Into Intergers For Fuzzy Sets to understand ## ## Each Value obtained is used to calculate the risk of each 45 degree around the agent ## ## Each value has its own "jump" variable which refers to the distance from each possible points/values ## ## The start and end represents the possible start point and end point for each variable and they depend on ## what the variiable is. It is to ensure a viable fuzzy set and fuzzy functions that these restrictions are applied. ## closingRate_SlowTopAlert = current_chromosome[0:4] closingRate_SlowTopAlertValue = transform_fuzzy(closingRate_SlowTopAlert, 1, 0, 16) closingRate_MediumTopLeftAlert = current_chromosome[4:8] closingRate_MediumTopLeftAlertValue = transform_fuzzy( closingRate_MediumTopLeftAlert, 1, (closingRate_SlowTopAlertValue + 1), (closingRate_SlowTopAlertValue + 1) + 16) closingRate_MediumTopRightAlert = current_chromosome[8:12] closingRate_MediumTopRightAlertValue = transform_fuzzy( closingRate_MediumTopRightAlert, 1, (closingRate_MediumTopLeftAlertValue + 1), (closingRate_MediumTopLeftAlertValue + 1) + 16) closingRate_FastTopAlert = current_chromosome[12:16] closingRate_FastTopAlertValue = transform_fuzzy( closingRate_FastTopAlert, 1, (closingRate_MediumTopRightAlertValue + 1), (closingRate_MediumTopRightAlertValue + 1) + 16) closingRate_SlowBottomAlert = current_chromosome[16:20] start = (closingRate_SlowTopAlertValue + (((closingRate_MediumTopLeftAlertValue - closingRate_SlowTopAlertValue) // 2) + 1)) end = (start + (1 * (2**(len(closingRate_SlowBottomAlert))))) closingRate_SlowBottomAlertValue = transform_fuzzy( closingRate_SlowBottomAlert, 1, start, end) closingRate_MediumBottomLeftAlert = current_chromosome[20:24] end = (closingRate_MediumTopLeftAlertValue - (((closingRate_MediumTopLeftAlertValue - closingRate_SlowTopAlertValue) // 2) + 1)) start = end - (1 * (2**(len(closingRate_MediumBottomLeftAlert)))) if (end < 0): end = 0 if (start < 0): start = 0 jump = (end - start) // (2**(len(closingRate_MediumBottomLeftAlert))) closingRate_MediumBottomLeftAlertValue = transform_fuzzy( closingRate_MediumBottomLeftAlert, jump, start, end) closingRate_MediumBottomRightAlert = current_chromosome[24:28] start = (closingRate_MediumTopRightAlertValue + (((closingRate_FastTopAlertValue - closingRate_MediumTopRightAlertValue) // 2) + 1)) end = start + (1 * (2**(len(closingRate_MediumBottomRightAlert)))) closingRate_MediumBottomRightAlertValue = transform_fuzzy( closingRate_MediumBottomRightAlert, 1, start, end) closingRate_FastBottomAlert = current_chromosome[28:32] end = (closingRate_FastTopAlertValue - (((closingRate_FastTopAlertValue - closingRate_MediumTopRightAlertValue) // 2) + 1)) start = end - (1 * (2**(len(closingRate_FastBottomAlert)))) if (end < 0): end = 0 if (start < 0): start = 0 jump = (end - start) // (2**(len(closingRate_FastBottomAlert))) closingRate_FastBottomAlertValue = transform_fuzzy( closingRate_FastBottomAlert, jump, start, end) Distance_CloseTopAlert = current_chromosome[32:37] Distance_CloseTopAlertValue = transform_fuzzy( Distance_CloseTopAlert, 50, 0, (50 * (2**len(Distance_CloseTopAlert)))) Distance_FarTopAlert = current_chromosome[37:42] Distance_FarTopAlertValue = transform_fuzzy( Distance_CloseTopAlert, 50, (Distance_CloseTopAlertValue + 50), (Distance_CloseTopAlertValue + 50) + (50 * (2**len(Distance_CloseTopAlert)))) Distance_CloseBottomAlert = current_chromosome[42:47] start = (Distance_CloseTopAlertValue + (( (Distance_FarTopAlertValue - Distance_CloseTopAlertValue) // 2) + 1)) end = Distance_FarTopAlertValue jump = (end - start) // (2**(len(Distance_CloseBottomAlert))) Distance_CloseBottomAlertValue = transform_fuzzy(Distance_CloseBottomAlert, jump, start, end) Distance_FarBottomAlert = current_chromosome[47:52] end = (Distance_FarTopAlertValue - (( (Distance_FarTopAlertValue - Distance_CloseTopAlertValue) // 2) + 1)) start = Distance_CloseTopAlertValue jump = (end - start) // (2**(len(Distance_FarBottomAlert))) Distance_FarBottomAlertValue = transform_fuzzy(Distance_FarBottomAlert, jump, start, end) #Set variables for Wall feelers, heading and tracking of the agent ## heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) frontWall = ai.wallFeeler(500, heading) left45Wall = ai.wallFeeler(500, heading + 45) right45Wall = ai.wallFeeler(500, heading - 45) left90Wall = ai.wallFeeler(500, heading + 90) right90Wall = ai.wallFeeler(500, heading - 90) left135Wall = ai.wallFeeler(500, heading + 135) right135Wall = ai.wallFeeler(500, heading - 135) backWall = ai.wallFeeler(500, heading - 180) trackWall = ai.wallFeeler(500, tracking) ## Create an array that represents the closing rate of each 45 degree of the full 360 degrees surrounding the agent ## result_list = [] ## Array of the same size, but contains the risk of each direction ## risk_list = [] for i in range(8): Degree = tracking + (45 * i) Speed = ai.selfSpeed() Distance = ai.wallFeeler(10000, tracking + (45 * i)) result = Closing_Rate(Degree, tracking, Speed, Distance) result_list.append(result) ### Calculate the Fuzzy membership ### ### 1. Fuzzy Membership For Closing Rate (Speed + Tracking Involved) ### ### 2. Fuzzy Membership For Distance From Walls ### closing_rate, distance = Closing_Rate(Degree, tracking, Speed, Distance) low, medium, fast = Fuzzy_Speed( closing_rate, closingRate_SlowTopAlertValue, closingRate_SlowBottomAlertValue, closingRate_MediumBottomLeftAlertValue, closingRate_MediumTopLeftAlertValue, closingRate_MediumTopRightAlertValue, closingRate_MediumBottomRightAlertValue, closingRate_FastBottomAlertValue, closingRate_FastTopAlertValue) close, far = Fuzzy_Distance(distance, Distance_CloseTopAlertValue, Distance_CloseBottomAlertValue, Distance_FarBottomAlertValue, Distance_FarTopAlertValue) #print("close-far", close, far) risk = Fuzzy_Risk(low, medium, fast, close, far) risk_list.append(risk) ## Get the direction in deg that is most risky for the robot as well as the least risky direction ## max_risk = max(risk_list) track_risk = (tracking + (risk_list.index(max_risk) * 45) % 360) min_risk = min( risk_list ) ## Note: Biase Towards Left Side since min get the first min when risk might be equal ## ####### Getters Variable Regarding Important Information About Enemies ######## ##Find the closest ennemy## enemy = ai.lockClose() ## Get the lockheadingdeg of enemy ## head = ai.lockHeadingDeg() ## Get the dstance from enemy ## enemyDist = ai.selfLockDist() ## If the Enemy is Dead ## if (ai.selfAlive() == 0 and boolean == False): ## Calculate Fitness Current Individual ## score_previous = score score_current = ai.selfScore() fitness_value = fitness(population, count_frame, score_previous, score_current) fitness_list.append(fitness_value) ## If it went through the whole population and ready to move to next generation ## if ((loop + 1) == population_size): ## Output the fitness of population to allow user to see if learning is happening ## print("Generation:", generation) print("Agent Fitness:") print(fitness_list) print("Average Fitness:", statistics.mean(fitness_list)) print("Best Fitness:", max(fitness_list)) ## Finding the optimal chromosome to output it in data file ## string_maxChromosome = "" for chrom_max in range(chromosome_size): string_maxChromosome = string_maxChromosome + str( population[fitness_list.index( max(fitness_list))][chrom_max]) ## Formatting entire population in a big string to register it in excel file## string_population = "" for pop in range(population_size): for pop_chrom in range(chromosome_size): string_population = string_population + str( population[pop][pop_chrom]) if (pop != (population_size - 1)): string_population = string_population + "," ## Formatting entire population's fitness in a big string to register it in excel file## string_fitness = "" for fit in range(len(fitness_list)): string_fitness = string_fitness + str(fitness_list[fit]) if (fit != (len(fitness_list) - 1)): string_fitness = string_fitness + "," ## Output Data into Excel File ## titles = [ "Generation", "Average Fitness", "Best Fitness", "Population Size", "Chromosome Size", "Crossover Probability", "Mutation Probability", "Best Chromosome", "Entire Population Chromosome", "Entire Population Fitness" ] data = [ generation, statistics.mean(fitness_list), max(fitness_list), population_size, chromosome_size, crossover_prob, mutation_prob, string_maxChromosome, string_population, string_fitness ] first_time = Save_Data("Dumpster_Training_Data.xls", 0, titles, data, first_time) ## Select Population For Next Generation -- Apply Crossover & Mutation ## new_population = select(population, fitness_list) new_population = crossover(new_population, chromosome_size, population_size, crossover_prob) new_population = mutate(new_population, chromosome_size, mutation_prob) population = new_population loop = 0 count_frame = 0 generation += 1 fitness_list.clear() ### DONE -- QUIT ### if (generation == generation_size): quitAI() ## Move to the next individual in population ## else: loop += 1 count_frame = 0 boolean = True else: ## The agent is Alive ## if (ai.selfAlive() == 1): ## Get the angles on both side between tracking and heading to decide which way to turn ## dist = (heading - track_risk) % 360 dist2 = (360 - dist) % 360 ###### Production System Rules ###### ## Turning Rules ## if (dist <= 130 and dist >= 0 and ai.selfSpeed() > 0 and max_risk >= 75): ai.turnLeft(1) elif (dist2 <= 130 and dist2 >= 0 and ai.selfSpeed() > 0 and max_risk >= 75): ai.turnRight(1) elif (ai.selfSpeed() <= 10): ai.thrust(1) elif (trackWall <= 150): ai.thrust(1) ##### Bullet Avoidance Commands ##### elif (ai.shotAlert(0) >= 0 and ai.shotAlert(0) <= 50): if (ai.shotVelDir(0) != -1 and ai.angleDiff(heading, ai.shotVelDir(0)) > 0 and ai.selfSpeed() <= 5): ai.turnLeft(1) ai.thrust(1) elif (ai.shotVelDir(0) != -1 and ai.angleDiff(heading, ai.shotVelDir(0)) < 0 and ai.selfSpeed() <= 5): ai.turnRight(1) ai.thrust(1) elif (ai.shotVelDir(0) != -1 and ai.angleDiff(heading, ai.shotVelDir(0)) > 0 and ai.selfSpeed() > 5): ai.turnLeft(1) else: ai.turnRight(1) ##### Shooting Ennemy Commands ##### elif (enemyDist <= 3000 and heading > (head) and enemyDist != 0 and ai.selfSpeed() > 5): ai.turnRight(1) ai.fireShot() elif (enemyDist <= 3000 and heading < (head) and enemyDist != 0 and ai.selfSpeed() > 5): ai.turnLeft(1) ai.fireShot() ## Rules if nothing is happening ## elif (ai.selfSpeed() < 5): ai.thrust(1) else: ai.thrust(0) count_frame += 3 boolean = False
right90Wall = ai.wallFeeler(500,heading-90) left135Wall = ai.wallFeeler(500,heading+135) right135Wall = ai.wallFeeler(500,heading-135) backWall = ai.wallFeeler(500,heading-180) trackWall = ai.wallFeeler(500,tracking) You can run a server with the following command: #Thrust rules if ai.selfSpeed() <= 5 and (frontWall >= 200) and (left45Wall >= 200) and (right45Wall >= 200) and (right90Wall >= 200) and (left90Wall >= 200) and (left135Wall >= 50) and (right135Wall >= 50) and (backWall >= 50): ai.thrust(1) elif trackWall < 100: ai.thrust(1) elif frontWall <= 300 and (left45Wall < right45Wall): ai.turnRight(1) elif left90Wall <= 200: ai.turnRight(1) elif frontWall <= 300 and (left45Wall > right45Wall): ai.turnLeft(1) elif right90Wall <= 200: ai.turnLeft(1) elif backWall <= 30 or left135Wall <= 30 or right135Wall <= 30: ai.thrust(1) else: ai.thrust(0) #Just keep shooting ai.fireShot() ai.start(AI_loop,["-name","Dubster","-join","localhost"])
def AI_loop(self): # print("AI_LOOP") if ai.selfAlive() == 0: print("selfAlive is 0") # if ai.selfAlive() == 0 and time2quit: outputFile = open("output.txt", "w") outputFile.write(str(self.counter)) outputFile.close() # ai.quitAI() # print(countFrames) # Release keys ai.thrust(0) ai.turnLeft(0) ai.turnRight(0) ai.setTurnSpeed(55) turnSpeedMin = 15 turnSpeedMax = 64 # Heuristics #frontFeelerOffset = 35 ffo = self.frontFeelerOffset rfo = self.rearFeelerOffset perpFeelerOffset = 90 #rearFeelerOffset = 135 # speedLimit = 5 lowSpeedLimit = 2 targetingAccuracy = 4 # 1/2 tolerance in deg for aiming accuracy shotIsDangerous = 130 # Acquire information heading = int(ai.selfHeadingDeg()) tracking = int(ai.selfTrackingDeg()) # Wall feeling feelers = [] frontWall = ai.wallFeeler(750, heading) leftWall = ai.wallFeeler(500, heading + perpFeelerOffset) rightWall = ai.wallFeeler(500, heading - perpFeelerOffset) trackWall = ai.wallFeeler(750, tracking) rearWall = ai.wallFeeler(250, heading - 180) backLeftWall = ai.wallFeeler(500, heading + round(rfo)) backRightWall = ai.wallFeeler(500, heading - round(rfo)) frontLeftWall = ai.wallFeeler(500, heading + round(ffo)) frontRightWall = ai.wallFeeler(500, heading - round(ffo)) feelers.append(frontWall) feelers.append(leftWall) feelers.append(rightWall) feelers.append(trackWall) feelers.append(rearWall) feelers.append(backLeftWall) feelers.append(backRightWall) feelers.append(frontLeftWall) feelers.append(frontRightWall) if min(feelers) < self.veryNearLimit: self.speedLimit = lowSpeedLimit # Movement controls # Compute angles to the nearest things m = self.angleToPointDeg((ai.selfX(), ai.selfY()), (ai.shotX(0), ai.shotY(0))) n = self.angleToPointDeg((ai.selfX(), ai.selfY()), (ai.shotX(0), ai.shotY(0))) # Sets turn speed and degree to the enemy if ai.screenEnemyX(0) >= 0: enemyDeg = self.angleToPointDeg( (ai.selfX(), ai.selfY()), (ai.screenEnemyX(0), ai.screenEnemyY(0))) ai.setTurnSpeed( self.rangeMap(abs(enemyDeg), 0, 180, turnSpeedMin, turnSpeedMax)) else: enemyDeg = self.angleToPointDeg( (ai.selfRadarX(), ai.selfRadarY()), (ai.closestRadarX(), ai.closestRadarY())) ai.setTurnSpeed( self.rangeMap(abs(enemyDeg), 0, 180, turnSpeedMin, turnSpeedMax)) # Turn towards unoccluded enemies while in open space if ai.aimdir(0) >= 0 and self.headingDiff( heading, ai.aimdir(0)) > 0 and not self.enemyBehindWall(0): ai.turnRight(1) elif ai.aimdir(0) >= 0 and self.headingDiff( heading, ai.aimdir(0)) < 0 and not self.enemyBehindWall(0): ai.turnLeft(1) # Turn away from nearby walls elif min(feelers) < ai.enemyDistance( 0 ) and trackWall < self.nearLimit and leftWall < rightWall: #DONE ai.turnRight(1) elif min(feelers) < ai.enemyDistance( 0 ) and trackWall < self.nearLimit and rightWall < leftWall: #DONE ai.turnLeft(1) elif min(feelers) < ai.enemyDistance( 0 ) and backLeftWall < self.nearLimit and rightWall > self.nearLimit: ai.turnRight(1) elif min(feelers) < ai.enemyDistance( 0 ) and backRightWall < self.nearLimit and leftWall > self.nearLimit: ai.turnLeft(1) elif min(feelers) < ai.enemyDistance( 0) and frontRightWall < self.nearLimit: ai.turnLeft(1) elif min(feelers) < ai.enemyDistance( 0) and frontLeftWall < self.nearLimit: ai.turnRight(1) # TODO: NEED RULES FOR WHEN ENEMY IS OCCLUDED elif self.enemyBehindWall and enemyDeg < 0: ai.turnRight(1) elif self.enemyBehindWall and enemyDeg >= 0: ai.turnLeft(1) # Turn away from shots elif m > 0: ai.turnRight(1) elif m < 0: ai.turnLeft(1) # THRUST (includes fuzzy controller) # Power levels power1 = 55 power2 = 45 power3 = 55 power4 = 36 power5 = 36 power6 = 28 power7 = 24 power8 = 30 mfS = self.mfSpeed(ai.selfSpeed()) mfD = self.mfDanger(ai.shotAlert(0)) # Aggregation # if S is high and D is moderate or high: p1 = max(mfS[2], min(mfD[1], mfD[2])) # if S is moderate and D is moderate: p2 = max(mfS[1], mfD[1]) # if S is low and D is high: p3 = max(mfS[0], mfD[2]) # if S is moderate and D is moderate: p4 = max(mfS[1], mfD[1]) # if S is low and D is moderate: p5 = max(mfS[0], mfD[1]) # if S is high and D is low: p6 = max(mfS[2], mfD[0]) # if S is moderate and D is low: p7 = max(mfS[1], mfD[0]) # if S is low and D is low: p8 = max(mfS[0], mfD[0]) consequents = [ power1, power2, power3, power4, power5, power6, power7, power8 ] memberships = [p1, p2, p3, p4, p5, p6, p7, p8] # Defuzzification ai.setPower(self.crispify(memberships, consequents)) # Further thrusting rules if ai.shotAlert(0) < 130 and ai.shotAlert(0) != -1 and ai.wallBetween( ai.selfX(), ai.selfY(), ai.shotX(0), ai.shotY(0)) == -1: ai.thrust(1) elif ai.selfSpeed() <= self.speedLimit: ai.thrust(1) elif trackWall < self.nearLimit and self.angleDiff(heading, tracking) > 75: ai.thrust(1) elif rearWall < self.nearLimit and self.angleDiff(heading, tracking) > 90: ai.thrust(1) # FIRE # Restrict firing to reasonably accurate attempts if self.headingDiff(heading, ai.aimdir( 0)) < targetingAccuracy and not self.enemyBehindWall(0): ai.fireShot() self.counter += 1