Beispiel #1
0
def ImageFromSpikes(input_spikes,
                    file_path="./latest.png",
                    show=True,
                    save=True,
                    xmin=False,
                    xmax=False):
    '''Input: get converted to:
    spikes = list of lists (neurons) of ms
    ie. [[1, 3, 5], [2, 4, 5]] # 2 neurons, 3 spikes/neuron, ms 1, 3...
    '''
    global sp
    from plugins.importer import spikesDictToArray

    spikes = spikesDictToArray(input_spikes)
    if xmax or xmin: #TODO: Use numpy (faster) v1.0
        new_spikes = []
        for i in spikes:
            i = [l for l in i if l < xmax and l > xmin]
            new_spikes.append(i)
        spikes = new_spikes

    if save:
        cprint("\t*\tSaving image to %s" % file_path, 'info')
    sp.set_fig_name(file_path)
    sp.set_figsize((24, 18))
    sp.set_linestyle('-')
    sp.set_markerscale(0.8)
    sp.plot_spikes(spikes, draw=show, savefig=save)
#    del sp #fixes memory leak? Seems not
    del spikes
    del input_spikes
    # Debug code
    # from subprocess import call
    # call(["feh", file_path])
    return True
Beispiel #2
0
 def POST(self):
     global Work
     global client_port
     cprint("Data received, saving!", 'okgreen')
     save = open("MultiHeaded-analisys.csv", 'a')
     save.write(web.data())
     save.close()
     cprint("Sending next!", 'okgreen')
     work_append(
         web.ctx['ip'], client_port, Work.pop(1,1))
     work_start(web.ctx['ip'], client_port)
Beispiel #3
0
def main_loop(content, remote, dummy):
    i = 0
    total = len(content)
    for values in content:
        filename = "./%s/%s_%s.png" % (values[1], values[2], values[3])
        cprint("[%s/%s] %s match and is missing, generating image\r" % (i, total, filename), 'info')
        #TODO:allow compressed
        data = import_history("%s/%s_%s_output.gz" % (values[0], values[2], values[3]), compressed=True)
        state = ImageIO.ImageFromSpikes(
            data["NeMo"][1],
            file_path = filename,
            save = True,
            show = False
        )
        del state
        del data #Memory leak again?
        i += 1
Beispiel #4
0
def info_print(total, core_number, print_only = False):
    from libs.IO import cprint
    if not total:
        cprint("No simulations to analyze, exiting")
        exit()
    cprint("Total number of analysis to be run: %s" % (total), 'okblue')
    cprint("And we are going to use %s%s %s"
           %
           ( #Style :D
               "even " if core_number >= 8 \
               else "well " if core_number >= 4 \
               else "just " if core_number <= 2 \
               else ""
               , core_number
               , "thread" if core_number == 1 else "threads"
           ) #Style again XD
           , 'okgreen' if core_number >= 4 \
           else 'okblue' if core_number >= 3 \
           else 'warning' if core_number >= 2 \
           else 'red'
           
    )
    if print_only: #Print simulations number and exit!
        exit()
Beispiel #5
0
def showImageFile(image_path):
    try:
        img = Image.open(image_path)
        img.show()
    except IOError:
        cprint("ERROR: cannot load image (Image file does not exists)", 'fail')
Beispiel #6
0
#!/usr/bin/env python2
from PIL import Image
from libs.IO import cprint
from libs.IO import COLORS

try:
    from neuronpy.graphics import spikeplot
except ImportError:
    cprint("You need nepuronpy to create spikes images\n\
    (as root) pip2 install neuronpy; pip2 install matplotlib", 'fail')
sp = spikeplot.SpikePlot(savefig=True)

def showImageFile(image_path):
    try:
        img = Image.open(image_path)
        img.show()
    except IOError:
        cprint("ERROR: cannot load image (Image file does not exists)", 'fail')

def saveRawImage(img, name, close=True):
    try:
        img.save(name)
    except AttributeError:
        try:
            img.savefig(name)
            if close:
                img.close()
        except:
            raise
    return True
Beispiel #7
0
Work = workQueue(list_all(args.path, args.start_from, args.end_to))
if __name__ == "__main__":
    from libs.IO import cprint
    from time import sleep
    app = Worker(urls, globals())
    info = {}
    #Get info needed as core number etc
    for client in clients:
        info[client] = {}
        success = False
        while not success:
            try:
                response = requests.get(ip_port(client,client_port)+"/cores").text
                success = True
            except requests.exceptions.ConnectionError:
                cprint("Cannot connect to %s" % (client),'fail')
                cprint("Retry in 1 sec", 'info')
                sleep(1)
        info[client]["cores"] = json.loads(response)["cores"]
        info[client]["multiplier"] = json.loads(response)["multiplier"]
    #Add work to queue. Will be started when everyone get it's own
    #(that way we can start the server that receive the results in time)
    #Append a work for every core of every client

    for client_ip in info:
        cprint("Loading data for %s" % client_ip, 'info')
        work_append(
            client_ip, client_port, Work.pop(
                info[client_ip]["cores"]
                , info[client_ip]["multiplier"]))
            
Beispiel #8
0
    )
    parser.add_argument('--cores',
                        help = 'Number of cores to use. All by default'
                        , dest = 'cores'
                        , default = get_cores()
    )
  
    args = parser.parse_args()
    path = args.path

    #Read ANALYSIS file
    fname = args.analysis_file
    with open(fname) as f:
        content = f.readlines()

    cprint("Total files provided: %s; Number of cores: %s" % (len(content), args.cores), 'info')
    is_folder(args.images_path)

    real_content = []
#    existing = listdir(args.images_path) #Slower than isfile
    for line in content:
        file_data = line.split(",")
        general = file_data[0]
        config = file_data[1]
        if args.run_all or (file_data[2] == "1" == file_data[7]):
            filename = "%s_%s.png" % (general, config)
            if not isfile("./%s" % args.images_path + filename):
           # if filename not in existing: #Slower than isfile O.o
                real_content.append((args.path, args.images_path, general, config))
#            else: existing.remove(filename)
Beispiel #9
0
commands = substituteRanges([args], [])

#fix parentheses:
commands = [ i for i in commands if not missing(i) ]

#set just to be sure no duplicate runs
real_commands = set(commands)

#TODO:
#FIXME: remove "--show-image" etc to prevent different hashes of same config
session_hash = hashDict(real_commands)

#Save commands list
is_folder("./commands")
commands_file = "./commands/" + session_hash + "_commands"
cprint ("Saving %s commands to file: %s" % (len(real_commands), commands_file), 'info')
saveKey(commands_file, commands)
# Debug: re-enable in release
# cprint("Running in 5s", "warning")
# time.sleep(5)

#Start
is_folder (output_dir)

cprint("We'll use %s as output dir" % (output_dir), 'info')

#Let's run the simulations (surely not the best way, but does the job)
#TODO: add the loop inside Runner?
start = time.time()
try:
    run = import_history(output_dir + "/" + session_hash + "_batch")
Beispiel #10
0
def return_analysis_output(f, neurons_info, input_conf, steps):
    try:
        to_write = "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n" % (
            f.split("_")[0] #Save somewhere to save time, used multimple times #1
            , f.split("_")[1]
            , neurons_info[4]["mode"]
            , neurons_info[4]["on_time"]
            , neurons_info[4]["off_time"]
            , neurons_info[4]["burst_freq"]
            , neurons_info[4]["not_burst_freq"]
            , neurons_info[5]["mode"]
            , neurons_info[5]["on_time"]
            , neurons_info[5]["off_time"]
            , neurons_info[5]["burst_freq"]
            , neurons_info[5]["not_burst_freq"]
            , input_conf["cerebellum_ctrl_a"][0]
            , input_conf["cerebellum_ctrl_a"][1]
            , input_conf["cerebellum_ctrl_a"][2]
            , input_conf["cerebellum_ctrl_b"][0]
            , input_conf["cerebellum_ctrl_b"][1]
            , input_conf["cerebellum_ctrl_b"][2]
            , input_conf["_stim_a"]
            , input_conf["_stim_b"]
            , input_conf["_start_a"]
            , input_conf["_start_b"]
            , input_conf["_stop_a"]
            , input_conf["_stop_b"]
            , input_conf["CIN"][0][0]
            , input_conf["CIN"][0][1]
            , input_conf["CIN"][0][2]
            , input_conf["CIN"][0][3]
            , input_conf["CIN"][0][4]
            , input_conf["CIN"][0][5]
            , input_conf["CIN"][0][6]
            , input_conf["EIN"][0][0]
            , input_conf["EIN"][0][1]
            , input_conf["EIN"][0][2]
            , input_conf["EIN"][0][3]
            , input_conf["EIN"][0][4]
            , input_conf["EIN"][0][5]
            , input_conf["EIN"][0][6]
            , input_conf["synapses"][0][2][0] #delay
            , input_conf["synapses"][0][2][1] #int
            , input_conf["synapses"][1][2][0] #delay
            , input_conf["synapses"][1][2][1] #int
            , input_conf["synapses"][2][2][0] #delay
            , input_conf["synapses"][2][2][1] #int
            , input_conf["synapses"][3][2][0] #delay
            , input_conf["synapses"][3][2][1] #int
            , input_conf["synapses"][4][2][0] #delay
            , input_conf["synapses"][4][2][1] #int
            , input_conf["synapses"][5][2][0] #delay
            , input_conf["synapses"][5][2][1] #int            
            , steps #38
        )

    except KeyError:
        to_write = "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n" % (
            f.split("_")[0] #Save somewhere to save time, used multimple times #1
            , f.split("_")[1]
            , 3
            , 0
            , 0
            , 0
            , 0
            , 3
            , 0
            , 0
            , 0
            , 0
            , input_conf["cerebellum_ctrl_a"][0]
            , input_conf["cerebellum_ctrl_a"][1]
            , input_conf["cerebellum_ctrl_a"][2]
            , input_conf["cerebellum_ctrl_b"][0]
            , input_conf["cerebellum_ctrl_b"][1]
            , input_conf["cerebellum_ctrl_b"][2]
            , input_conf["_stim_a"]
            , input_conf["_stim_b"]
            , input_conf["_start_a"]
            , input_conf["_start_b"]
            , input_conf["_stop_a"]
            , input_conf["_stop_b"]
            , input_conf["CIN"][0][0]
            , input_conf["CIN"][0][1]
            , input_conf["CIN"][0][2]
            , input_conf["CIN"][0][3]
            , input_conf["CIN"][0][4]
            , input_conf["CIN"][0][5]
            , input_conf["CIN"][0][6]
            , input_conf["EIN"][0][0]
            , input_conf["EIN"][0][1]
            , input_conf["EIN"][0][2]
            , input_conf["EIN"][0][3]
            , input_conf["EIN"][0][4]
            , input_conf["EIN"][0][5]
            , input_conf["EIN"][0][6]
            , input_conf["synapses"][0][2][0] #delay
            , input_conf["synapses"][0][2][1] #int
            , input_conf["synapses"][1][2][0] #delay
            , input_conf["synapses"][1][2][1] #int
            , input_conf["synapses"][2][2][0] #delay
            , input_conf["synapses"][2][2][1] #int
            , input_conf["synapses"][3][2][0] #delay
            , input_conf["synapses"][3][2][1] #int
            , input_conf["synapses"][4][2][0] #delay
            , input_conf["synapses"][4][2][1] #int
            , input_conf["synapses"][5][2][0] #delay
            , input_conf["synapses"][5][2][1] #int
            , steps #29
        )
        cprint("Key error!","fail")
    return to_write