Beispiel #1
0
def load_image(data, tar_size=(2048, 2048)):
    image = prep.imread(data.image)
    label = prep.imread(data.label, c=0)
    vessel = prep.imread(data.vessel, c=0)

    if image.shape[:2] != tar_size:
        image = prep.resize_image(image, tar_size=tar_size)
    if label.shape[:2] != tar_size:
        label = prep.resize_image(label, tar_size=tar_size)
    if vessel.shape[:2] != tar_size:
        vessel = prep.resize_image(vessel, tar_size=tar_size)

    return image, label, vessel
    def _transform_label_data(file_path):
        img = imread(file_path, c=0)
        if img.max() > 1:
            img = img.astype(np.float) / 255.0

        label_img = np.ones(shape=(img.shape[0], img.shape[1], c.layer_num))
        for i in range(c.layer_num):
            label_img[:, :, i] = (img == i).astype(np.float)
        return label_img
Beispiel #3
0
def clear_images():
    image_dicts = libfi.getfiledicbyext(_c.model_image_dir, ext='jpg')
    label_dicts = libfi.getfiledicbyext(_c.model_label_dir, ext='png')
    for k, v in label_dicts.items():
        label = prep.imread(v, 0)
        if np.sum(label) <= 1:
            os.remove(v)
            os.remove(image_dicts[k])
            print(k)

    for k, v in image_dicts.items():
        if k not in label_dicts:
            os.remove(v)
 def _transform_image_data(file_path):
     img = imread(file_path)
     img = img.astype(np.float) / 255.0
     return img