def run(args): nnet = Nnet(**nnet_conf) trainer = PermutationTrainer(nnet, gpuid=args.gpu, checkpoint=args.checkpoint, **trainer_conf) data_conf = {"train_data": train_data, "dev_data": dev_data} confs = [nnet_conf, feats_conf, trainer_conf, data_conf] names = ["mdl.json", "feats.json", "trainer.json", "data.conf"] for conf, fname in zip(confs, names): dump_json(conf, args.checkpoint, fname) feats_conf["shuf"] = True train_loader = make_pitloader(train_data["linear_x"], feats_conf, train_data, batch_size=args.batch_size, cache_size=args.cache_size) feats_conf["shuf"] = False dev_loader = make_pitloader(dev_data["linear_x"], feats_conf, dev_data, batch_size=args.batch_size, cache_size=args.cache_size) trainer.run(train_loader, dev_loader, num_epochs=args.epochs)
def run(args): gpuids = tuple(map(int, args.gpus.split(","))) nnet = ConvTasNet(**nnet_conf) trainer = SiSnrTrainer(nnet, gpuid=gpuids, checkpoint=args.checkpoint, resume=args.resume, **trainer_conf) data_conf = { "train": train_data, "dev": dev_data, "chunk_size": chunk_size } for conf, fname in zip([nnet_conf, trainer_conf, data_conf], ["mdl.json", "trainer.json", "data.json"]): dump_json(conf, args.checkpoint, fname) train_loader = make_dataloader(train=True, data_kwargs=train_data, batch_size=args.batch_size, chunk_size=chunk_size, num_workers=args.num_workers) dev_loader = make_dataloader(train=False, data_kwargs=dev_data, batch_size=args.batch_size, chunk_size=chunk_size, num_workers=args.num_workers) trainer.run(train_loader, dev_loader, num_epochs=args.epochs)
def run(args): train_data["knownPercent"] = args.known_percent dev_data["knownPercent"] = args.known_percent gpuids = tuple(map(int, args.gpus.split(","))) nnet = ConvTasNet(**nnet_conf) if args.mixofmix == 0: logger.info("SisSnrTrainer") trainer = SiSnrTrainer(nnet, gpuid=gpuids, checkpoint=args.checkpoint, resume=args.resume, comment=args.comment, **trainer_conf) else: logger.info("MixtureOfMixturesTrainer") trainer = MixtureOfMixturesTrainer(nnet, gpuid=gpuids, checkpoint=args.checkpoint, resume=args.resume, comment=args.comment, **trainer_conf) logger.info("Known pecents " + str(dev_data["knownPercent"])) data_conf = { "train": train_data, "dev": dev_data, "chunk_size": chunk_size } for conf, fname in zip([nnet_conf, trainer_conf, data_conf], ["mdl.json", "trainer.json", "data.json"]): dump_json(conf, args.checkpoint, fname) if args.mixofmix == 0: train_loader = make_dataloader(train=True, data_kwargs=train_data, batch_size=args.batch_size, chunk_size=chunk_size, num_workers=args.num_workers) dev_loader = make_dataloader(train=False, data_kwargs=dev_data, batch_size=args.batch_size, chunk_size=chunk_size, num_workers=args.num_workers) else: train_loader = make_dataloader(train=True, data_kwargs=train_data, batch_size=args.batch_size, chunk_size=chunk_size, num_workers=args.num_workers, mixofmix=True) dev_loader = make_dataloader(train=False, data_kwargs=dev_data, batch_size=args.batch_size, chunk_size=chunk_size, num_workers=args.num_workers, mixofmix=True) trainer.run(train_loader, dev_loader, num_epochs=args.epochs)
def run(args): gpuids = tuple(map(int, args.gpus.split(","))) logger.info("Create ConvTasNet ...") nnet = ConvTasNet(**nnet_conf) if args.loss == "nr_loss": logger.info("Create NoiseReconstructTrainer ...") trainer = NoiseReconstructTrainer(nnet, gpuid=gpuids, checkpoint=args.checkpoint, resume=args.resume, **trainer_conf) else: logger.info("Create SiSnrTrainer ...") trainer = SiSnrTrainer(nnet, gpuid=gpuids, checkpoint=args.checkpoint, resume=args.resume, **trainer_conf) logger.info("Finish ConvTasNet.") logger.info("Prepare data {} {}.".format(train_data, dev_data)) data_conf = { "train": train_data, "dev": dev_data, "chunk_size": chunk_size } for conf, fname in zip([nnet_conf, trainer_conf, data_conf], ["mdl.json", "trainer.json", "data.json"]): dump_json(conf, args.checkpoint, fname) logger.info("make_dataloader for train.") train_loader = make_dataloader(train=True, data_kwargs=train_data, batch_size=args.batch_size, chunk_size=chunk_size, num_workers=args.num_workers) logger.info("make_dataloader for dev.") dev_loader = make_dataloader(train=False, data_kwargs=dev_data, batch_size=args.batch_size, chunk_size=chunk_size, num_workers=args.num_workers) logger.info("runing...") trainer.run(train_loader, dev_loader, num_epochs=args.epochs)