def __init__(self): self.name = "YOLO-Recogniser" self.log("Loading weights...") self.model = lightnet.load("yolo") self.log("Created")
def load_resources(): """Loads in YoloV2 model Returns: model: YoloV2 model """ app.logger.debug('Loading yolo model') return lightnet.load(Yolo.MODEL)
def __init__(self): self.cap = cv2.VideoCapture(camera_port) self.model = lightnet.load('yolo') self.objects = [] self.es_dict = { "bottle": "una botella", 'keyboard': 'un teclado', 'diningtable': 'una mesa', 'cup': 'una taza', 'laptop': 'un portatil' }
def __init__(self): self.cap = cv2.VideoCapture(camera_port) self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280) self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720) self.cap.set(cv2.CAP_PROP_FPS, 10) self.model = lightnet.load('yolo') self.objects = [] self.es_dict = { "bottle" : "una botella" , \ 'keyboard':'un teclado' , \ 'diningtable':'una mesa' , \ 'cup':'una taza' , \ 'laptop':'un portatil' , \ 'wine glass': 'una copa' }
def __init__(self, pPedidos, capture): # Constant values self.videoCapture = capture self.cameraPort = 0 self.img_file_path = "data/img.jpg" self.boxes = 0 self.beverage_list = ['bottle', 'vase', 'cup', 'wine glass'] self.beverage_dict = { 'person':["persona"], \ 'bottle':["gaseosa", "cerveza"] , \ 'cell phone':["celular"], \ 'vase':["agua"] , \ 'cup':["cafe","café","tinto","te","té"] , \ 'wine glass':["copa de vino","vino"]} # Variables self.pedidos = pPedidos self.available_drinks = [] self.model = lightnet.load('yolo')
def __init__(self): self.txt_line = "" self.cap = cv2.VideoCapture(camera_port) self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280) self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720) self.cap.set(cv2.CAP_PROP_FPS, 30) self.bridge = CvBridge() self.model = lightnet.load('yolo') self.objects = [] self.es_dict = { 'bottle' : 'botella' , \ 'keyboard':'teclado' , \ 'diningtable':'mesa' , \ 'cup':'taza' , \ 'vase':'vaso' , \ 'laptop':'portatil' , \ 'wine glass': 'copa' } self.frame = None rospy.wait_for_service("sIA_take_picture") self.takePicture = rospy.ServiceProxy("sIA_take_picture", TakePicture) self.boxes = [] self.dists = []
#!/usr/bin/python # OBJECT RECOGNITION # by tHE iNCREDIBLE mACHINE # # A nice script to test in import lightnet print("Loading weights...") model = lightnet.load("yolo") print("Loading image...") image = lightnet.Image.from_bytes(open('/VirtualShare/dog.jpg', 'rb').read()) print("Classifying...") boxes = model(image) print(boxes) print("Done.")
def plot_trajectory(_c, im): for t in _c.keys(): x = [] y = [] for i, j in _c[t]: x.append(i) y.append(j) plt.plot(x, y, zorder=1) plt.imshow(im, zorder=0) plt.axis([0, 238, 158, 0]) plt.show() model = lightnet.load('yolo') start = time.time() collect = {} # for dir in os.scandir(base_path): prev_arr = [] for i in range(200): fname = str(i+1).zfill(3) + '.tif' image, size, im_p = get_jpg(fname) tmp = model(image) result = [] for i, e in enumerate(tmp): result.append([i, e[-1][0], e[-1][1]])
def __init__(self): self.model = lightnet.load('yolo')
def image_test(dataset, lightnet_model, source=None, api=None, exclude=None): """ Test Prodigy's image annotation interface with a YOLOv2 model loaded via LightNet. Requires the LightNet library to be installed. The recipe will find objects in the images, and create a task for each object. """ log("RECIPE: Starting recipe image.test", locals()) try: import lightnet except ImportError: prints("Can't find LightNet", "In order to use this recipe, you " "need to have LightNet installed (currently compatible with " "Mac and Linux): pip install lightnet. For more details, see: " "https://github.com/explosion/lightnet", error=True, exits=1) def get_image_stream(model, stream, thresh=0.5): for eg in stream: if not eg['image'].startswith('data'): msg = "Expected base64-encoded data URI, but got: '{}'." raise ValueError(msg.format(eg['image'][:100])) image = lightnet.Image.from_bytes(b64_uri_to_bytes(eg['image'])) boxes = [b for b in model(image, thresh=thresh) if b[2] >= thresh] eg['width'] = image.width eg['height'] = image.height eg['spans'] = [get_span(box) for box in boxes] for i in range(len(eg['spans'])): task = copy.deepcopy(eg) task['spans'][i]['hidden'] = False task = set_hashes(task, overwrite=True) score = task['spans'][i]['score'] task['score'] = score yield task def get_span(box, hidden=True): class_id, name, prob, abs_points = box name = str(name, 'utf8') if not isinstance(name, str) else name x, y, w, h = abs_points rel_points = [[x - w / 2, y - h / 2], [x - w / 2, y + h / 2], [x + w / 2, y + h / 2], [x + w / 2, y - h / 2]] return { 'score': prob, 'label': name, 'label_id': class_id, 'points': rel_points, 'center': [abs_points[0], abs_points[1]], 'hidden': hidden } model = lightnet.load(lightnet_model) log("RECIPE: Loaded LightNet model {}".format(lightnet_model)) stream = get_stream(source, api=api, loader='images', input_key='image') stream = fetch_images(stream) def free_lighnet(ctrl): nonlocal model del model return { 'view_id': 'image', 'dataset': dataset, 'stream': get_image_stream(model, stream), 'exclude': exclude, 'on_exit': free_lighnet }