Beispiel #1
0
def test_adagrad_hinge_multiclass():
    clf = AdaGradClassifier(alpha=1e-2,
                            n_iter=100,
                            loss="hinge",
                            random_state=0)
    clf.fit(X, y)
    assert_almost_equal(clf.score(X, y), 0.960, 3)
Beispiel #2
0
def test_adagrad_elastic_hinge():
    clf = AdaGradClassifier(alpha=0.5,
                            l1_ratio=0.85,
                            n_iter=10,
                            random_state=0)
    clf.fit(X_bin, y_bin)
    assert_equal(clf.score(X_bin, y_bin), 1.0)
def test_adagrad_hinge_multiclass():
    clf = AdaGradClassifier(alpha=1e-2,
                            n_iter=100,
                            loss="hinge",
                            random_state=0)
    clf.fit(X, y)
    assert not hasattr(clf, "predict_proba")
    np.testing.assert_almost_equal(clf.score(X, y), 0.940, 3)
def test_adagrad_elastic_hinge():
    clf = AdaGradClassifier(alpha=0.5,
                            l1_ratio=0.85,
                            n_iter=10,
                            random_state=0)
    clf.fit(X_bin, y_bin)
    assert not hasattr(clf, "predict_proba")
    assert clf.score(X_bin, y_bin) == 1.0
def test_adagrad_elastic_log():
    clf = AdaGradClassifier(alpha=0.1,
                            l1_ratio=0.85,
                            loss="log",
                            n_iter=10,
                            random_state=0)
    clf.fit(X_bin, y_bin)
    assert clf.score(X_bin, y_bin) == 1.0
    check_predict_proba(clf, X_bin)
Beispiel #6
0
def test_adagrad_elastic_smooth_hinge(bin_train_data):
    X_bin, y_bin = bin_train_data
    clf = AdaGradClassifier(alpha=0.5,
                            l1_ratio=0.85,
                            loss="smooth_hinge",
                            n_iter=10,
                            random_state=0)
    clf.fit(X_bin, y_bin)
    assert not hasattr(clf, "predict_proba")
    assert clf.score(X_bin, y_bin) == 1.0
def test_adagrad_hinge_multiclass():
    clf = AdaGradClassifier(alpha=1e-2, n_iter=100, loss="hinge", random_state=0)
    clf.fit(X, y)
    assert not hasattr(clf, "predict_proba")
    assert_almost_equal(clf.score(X, y), 0.960, 3)
def test_adagrad_elastic_log():
    clf = AdaGradClassifier(alpha=0.1, l1_ratio=0.85, loss="log", n_iter=10, random_state=0)
    clf.fit(X_bin, y_bin)
    assert_equal(clf.score(X_bin, y_bin), 1.0)
    check_predict_proba(clf, X_bin)
def test_adagrad_elastic_smooth_hinge():
    clf = AdaGradClassifier(alpha=0.5, l1_ratio=0.85, loss="smooth_hinge", n_iter=10, random_state=0)
    clf.fit(X_bin, y_bin)
    assert not hasattr(clf, "predict_proba")
    assert_equal(clf.score(X_bin, y_bin), 1.0)
Beispiel #10
0
def test_adagrad_elastic_hinge():
    clf = AdaGradClassifier(alpha=0.5, l1_ratio=0.85, n_iter=10, random_state=0)
    clf.fit(X_bin, y_bin)
    assert_equal(clf.score(X_bin, y_bin), 1.0)