def test_etpa(): epp = Biphoton(0, 0.04 / au2ev, Te=10. / au2fs) p = np.linspace(-4, 4, 256) / au2ev q = p epp.set_grid(p, q) epp.get_jsa() # epp.plt_jsa() pump = np.linspace(0.5, 1.5, 100) / au2ev signal = etpa(pump, mol, epp, [0], [1, 2, 3], [2, 3]) fig, ax = subplots() ax.plot(pump * au2ev, np.abs(signal)**2) plt.show() return
# # ax.scatter(eigvals1.real, eigvals1.imag) # ax.plot(omegas, -2 * la.imag) # plt.show() solver = Lindblad_solver(H, c_ops=[0.02 * sx]) # solver.liouvillian() solver.eigenstates() # print(solver.right_eigvecs) times = np.linspace(0, 40) / au2fs result = solver.evolve(rho0, tlist=times, e_ops=[sx, sz]) # cor = solver.correlation_2op_1t(rho0=rho0, ops=[sx, sx], tlist=times) w = np.linspace(0.4, 2., 100) / au2ev S = solver.correlation_3op_1w(rho0=rho0, ops=[sx, sx, sx], w=w) fig, ax = subplots() ax.plot(w * au2ev, S.real) # print(cor) # fig, ax = matplot(times, times, cor.real) # cor = solver.correlation_3op_2t(ops=[sx, sx, sz], taulist=times, tlist=times, rho0=rho0, k=4) # fig, ax = subplots() # # # ax.scatter(eigvals1.real, eigvals1.imag) # ax.plot(result.times, result.observables[:,1]) # plt.show() # from lime.style import matplot # fig, ax = matplot(times, times, cor.real)