Beispiel #1
0
def test_etpa():
    epp = Biphoton(0, 0.04 / au2ev, Te=10. / au2fs)
    p = np.linspace(-4, 4, 256) / au2ev
    q = p
    epp.set_grid(p, q)

    epp.get_jsa()
    # epp.plt_jsa()

    pump = np.linspace(0.5, 1.5, 100) / au2ev
    signal = etpa(pump, mol, epp, [0], [1, 2, 3], [2, 3])

    fig, ax = subplots()
    ax.plot(pump * au2ev, np.abs(signal)**2)
    plt.show()
    return
Beispiel #2
0
    # # ax.scatter(eigvals1.real, eigvals1.imag)
    # ax.plot(omegas, -2 * la.imag)
    # plt.show()

    solver = Lindblad_solver(H, c_ops=[0.02 * sx])
    # solver.liouvillian()
    solver.eigenstates()
    # print(solver.right_eigvecs)

    times = np.linspace(0, 40) / au2fs

    result = solver.evolve(rho0, tlist=times, e_ops=[sx, sz])

    # cor = solver.correlation_2op_1t(rho0=rho0, ops=[sx, sx], tlist=times)
    w = np.linspace(0.4, 2., 100) / au2ev
    S = solver.correlation_3op_1w(rho0=rho0, ops=[sx, sx, sx], w=w)

    fig, ax = subplots()
    ax.plot(w * au2ev, S.real)
    # print(cor)
    # fig, ax = matplot(times, times, cor.real)

    # cor = solver.correlation_3op_2t(ops=[sx, sx, sz], taulist=times, tlist=times, rho0=rho0, k=4)

    # fig, ax = subplots()
    # # # ax.scatter(eigvals1.real, eigvals1.imag)
    # ax.plot(result.times, result.observables[:,1])
    # plt.show()
    # from lime.style import matplot
    # fig, ax = matplot(times, times, cor.real)